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Abstract. In this work we summarize, discuss and interpret the recent advances in security 
analysis and optimized SW and HW implementations of the NIST second round lightweight 
authenticated encryption candidate ForkAE. We highlight the most important comparisons 
in the recent ForkAE results, discuss their conclusions and illustrate our interpretation of 
these results with further use cases. 
While ForkAE with the ForkSkinny primitive is designed with efficiency for short messages 
in mind, when the underlying primitive ForkSkinny is used in the recent modes of operation 
RPAEF and GCTR the performance is also improved for the longer messages for authenti-
cated encryption and encryption, respectively. 
Regarding security, we bring evidence that ForkAE provides stronger security guarantees 
than originally claimed, and can thus also be classified as a ‘defense-in-depth’ candidate. 
More precisely, ForkAE provides well-defined nonce misuse resistance MNR guarantees in 
its sequential SAEF mode of operation (without any modifications) which is a feature that 
ensures stronger security guarantees in scenarios where nonces may accidentally or mali-
ciously be forced to repeat. The same security property of the SAEF mode simultaneously 
offers additional protections against blockwise adversaries, a use case particularly relevant 
in the lightweight setting. Furthermore, both parallel modes PAEF and the recent RPAEF 
come with full n-bit security. In addition, we show that when the ForkSkinny primitive is 
used in a GCTR counter-mode style encryption – a use case relevant when no explicit au-
thentication is mandated, the resulting schemes come not only with good performance for 
longer messages but also with high security guarantees. 
With respect to SW and HW implementation results we highlight the recent ForkAE and 
ForkSkinny primitive optimized SW and HW implementation strategies and their compar-
isons with other second round candidates, such as the SKINNY-AEAD and Romulus designs. 
The referenced optimized SW implementation comes with important improvements over the 
existing ForkAE portable implementations of Rhys Weatherley, with table-based and parallel 
optimization techniques. 

1 Introduction 

ForkAE is a family of cryptographic algorithms for lightweight authenticated encryption 
and a second-round candidate in the NIST Lightweight cryptography standardization pro-
cess. Its primary target use case are applications of predominantly short message size (e.g., 
8, 16, 32 bytes). This class of applications covers an ever increasing range of practical 
scenarios, such as: the Secure Onboard Communication in the automotive industry [4] 
which are expected to handle short messages with stringent latency requirements; Criti-
cal communication and massive IoT domains of 5G where frequent bursts of very short 
messages [1] need to proccessed; Narrowband IoT which allows for a minimum payload 
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size of 16 bits [3, 2], and which will dominate the communication in applications such as 
smart parking lots that need to transmit information encoded on a few bits (e.g., “free” 
or “occupied” status); medical implant devices, such as pacemakers, transmit messages of 
length at most 16 bytes to and from the device programmer; Advanced robotic prosthetics 
which wirelessly transmit bursts of short messages with stringent latency requirements, 
as well as 1-byte temporal synchronization messages [5]; Wireless aircraft tyre pressure 
monitoring systems which usually transmit payloads of ≤ 10 bytes [28], etc. 

Most recently we have witnessed several works investigating various security and imple-
mentation aspects of ForkAE. In this work we give an overview of these results and discuss 
their contributions to the advancement of knowledge on the ForkAE lightweight authen-
ticated encryption design and their implications on the use of ForkAE. Our survey covers 
implementation-oriented results both in hardware and software, and as well as security 
results both on the level of primitive and mode. We also point to further target use cases 
for ForkAE, such as defense in depth and much more efficient long message processing. 

Finally, we we identify new applications for the forkcipher primitive, as well as 
promising future research directions. 

2 Brief Description 

A forkcipher is a function F : {0, 1}κ ×{0, 1}t ×{0, 1}n ×{0, 1, b} → {0, 1}n ∪{0, 1}2n which 
takes a tweakey ∈ {0, 1}t+κ , a message ∈ {0, 1}n as and an output-switch as input and 
produces the “left”, the “right” or “both” n-bit output blocks according to the output-
switch. κ and t denotes the length (in bits) of the secret key and tweak respectively. 

ForkSkinny is a forkcipher function and the underlying primitive used in the ForkAE 
NIST submission [9]. It is constructed following the iterate-fork-iterate (IFI) paradigm 
using the tweakable block cipher Skinny[14]. The outline of the ForkSkinny construction 
is depicted as in Figure 1. 
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Fig. 1: The structure of ForkSkinny. TKS denote the round tweakey schedule function 
and RF denotes the round function.(output-switch omitted) 



The round function of ForkSkinny is almost identical to the round function of Skinny. 
Each round can be described as 

Ri = Mixcolumn ◦ Addconstants ◦ Addroundtweakey ◦ Shiftrow ◦ Subcell 

where the Mixcolumn, Shiftrow, Subcell and Addroundtweakey functions are same as 
in Skinny. Note that the Addroundtweakey function is used in ForkSkinny to generate 
round tweakeys for rinit + r0 + r1 rounds, where r0 and r1 denote the number of rounds 
in the left and right branch of ForkSkinny and rinit denotes the number of rounds 
before forking. The Addconstants function in ForkSkinny differs from Skinny. Unlike 
Skinny (which has 6 bit round constants), the Addconstants in ForkSkinny generates 
7 bit round constants using an LFSR. For a more detailed description of the ForkSkinny 
algorithm we refer the readers to the article [9]. 

ForkAE proposed two modes of operation with ForkSkinny – a sequential one SAEF 
and a parallel one PAEF. 

3 Security of ForkSkinny and ForkAE 

3.1 Cryptanalysis of Forkcipher: An Overview 

In general, in an instantiaion of a forkcipher any exploitable weakness in the forking 
structure can give advanatge to an adversary. For example, on an earlier instantiation of 
forkcipher - ForkAES, the recosntruction query was used to cryptanalyse [11] and mount 
an attack on 9 out of 10 rounds. The cryptanalysis of ForkAES [11] exploited the (tweakey) 
differential in AES particularly in the forking setup. This differential trail is reffered to 
as reflection trail. Although the cryptanalysis in [11] did not violate the security of the 
ForkAES, it certainly showed the possible weaknesses in the forking structure. It also 
reduced the security margin of ForkAES significantly in terms of number of rounds. In 
[12], Bariant et al. improved upon the cryptanalysis of ForkAES proposed in [11]. They 
proposed an attack on the full ForkAES and showed several theoretical attacks on the full 
ForkAES by identifying a fraction of weak keys. 

ForkSkinny does not contain the exploitable weakness used against ForkAES. In [12], 
used a different approach to cryptanalyse reduced round ForkSkinny. The paper pro-
vided cryptanalysis of ForkSkinny-128 with 256-bit key and 256-bit tweakey (128-bit 
key and 128-bit tweak). 

3.2 Security of ForkSkinny 

Security of ForkSkinny depends heavily on the security of the block cipher SKINNY. 
It is clear that any cryptanalysis on (reduced round) SKINNY can also be applied to 
ForkSkinny. The known cryptanalysis of reduced round ForkSkinny does not cover 
significantly more number of rounds than SKINNY. For example, the most recent third 
party cryptanalysis [12] of ForkSkinny-128 with 256-bit key and 256-bit tweakey (128-
bit key and 128-bit tweak) covers 26 and 24 rounds respectively. This is not far off from 
the best known attack on SKINNY, which is on 23 rounds. The cryptanalysis in [12] 



does not contradict, as also concurred by the authors of the paper, the security of Fork-
Skinny and ForkAE. Here we remark that ForkSkinny-128 with 256-bit key is not a 
valid instantiation according to the ForkSkinny specification submitted to the NIST. 

Overall, the known cryptanalysis results on ForkSkinny (and on forkcipher) confirms 
the designers perspective that ForkSkinny has a security margin that is comparable to 
SKINNY. 

3.3 New Security Results on SAEF 

Several instances of the SAEF mode for nonce-based AEAD have been submitted as part 
of the ForkAE algorithm family [9]. SAEF is a sequential design, primarily conceived 
to have a reduced memory footprint compared to the PAEF mode. The original security 
claim given for SAEF was n/2-bit nonce-based AEAD security. In a recent work, Andreeva 
et al. [8] show that SAEF is in fact an a secure OAE scheme. We give the necessary context, 
the formal statement of the new result, and discuss the implications. 

Online Authenticated Encryption Security Notion. The security notion of Online 
Authenticated Encryption (OAE) is one of the security notions that aim at mitigating the 
impact accidental nonce reuse on AEAD (a.k.a. nonce misuse). Even infrequent nonce-
reuse can have catastrophic consequences on the security of AE schemes targeting the basic 
nonce-based AEAD security [35]. The severity and plausibility of nonce reuse in practice 
has been demonstrated by real-world attacks. For example, Böck et al. in USENIX’16 [15] 
demonstrated that 184 HTTPS servers worldwide repeat nonces used with AES-GCM, 
leading to a complete break of authenticity in the TLS session. Vanhoef and Piesens at 
CCS’17 [34] presented an attack which forces nonce repetitions and breaks the WPA2 
wireless protocol. The risk of an accidental nonce reuse is also high for small devices, such 
as in IoT, due to constraints on memory, energy etc. 

The “best possible” security of nonce based AEAD against nonce misuse captured by the 
notions of MRAE [31] and the RAE [21] is, unfortunately, mutually exclusive with the 
AE scheme in question being online. An online AE scheme processes the plaintext as in 
smaller, typically fixed-size blocks during encryption, and computes the ciphertext as a 
sequence of such blocks, such that i-th ciphertext block can be computed after having seen 
the first i plaintext blocks only. Practical AE schemes that are online can typically also 
be implemented with a constant memory footprint. 

¡¡¡¡¡¡¡ HEAD The security notion called OAE proposed by Fleischmann et al. [18] (and 
later corrected by Hoang et al. [21]) slots between the notions of nonce-based AEAD and 
MRAE, capturing the same level of integrity (as MRAE) and a well-defined, albeit lower 
level of confidentiality in face of nonce misuse, which is achievable by online AE schemes. 
======= The security notion called OAE proposed by Fleischmann et al. [18] (and 
later corrected by Hoang et al. [22]) slots between the notions of nonce-based AEAD and 
MRAE, capturing the same level of integrity (as MRAE) and a well-defined, albeit lower 
level of confidentiality in face of nonce misuse, which is achievable by online AE schemes. 
¿¿¿¿¿¿¿ 67fe6bdbc01d176f2633984e5bc96f4aab09d87a Roughly speaking, for an underlying 
primitive’s blocksize, an OAE-secure scheme will leak the length of longest block-aligned 
prefix of two plaintexts encrypted with the same nonce and associated data but nothing 
more. Endignoux and Vizár [20] later showed that the equivalence of OAE-security to (an 



adapted version of) the blockwise-adaptive AE security from [19]. The result implies that 
OAE-secure schemes are safe to use in settings where block-wise adaptive attackers may 
exist, i.e., where an application outputs a part of the ciphertext before it has been fed the 
entire plaintext. Such attacks pose a real threat to lightweight applications, e.g., due to 
small devices not equipped with sufficient memory. The OAE notion has been targeted by 
the COLM [6] CAESAR defense in depth finalist. 

OAE security of SAEF. 

In [8] the authors investigate the OAE security of ForkAE and more precisely on the online 
scheme SAEF. ForkAE was proposed with two modes initially in mind: the parallelizable 
mode PAEF and the sequential mode SAEF [9]. Both are provably secure nonce-based AE 
schemes [30] (we skip the syntax of AE schemes for brevity). The former achieves optimal 
quantitative security (thus allowing for secure instances with a small block size) while the 
latter is secure up to the birthday bound but requires a smaller internal state. We focus 
on the SAEF mode which processes blocks of AD and message with single call to F each, 
using tweaks composed of the either a padded nonce (of length t − 4) or a string of n − 3 
zeros, and a domain separation constant. See Figure 2. 

Fig. 2: The encryption algorithm of SAEF[F] mode. The bit noM = 1 iff |M | = 0. The picture illustrates 
the processing of AD when length of AD is a multiple of n (top left) and when the length of AD is not 
a multiple of n (top right), and the processing of the message when length of the message is a multiple 
of n (bottom left) and when the length of message is not a multiple of n (bottom right). The white 
hatching denotes that an output block is not computed. If |M | = 0, the tag is equal to TA; else if |A| = 0, 
the AD processing is skipped. 

The results of [8], stated below in Theorem 1, show that the SAEF mode is provably OAE 
secure without the need of applying any design modifications, as long as the total amount 
of data processed with a single key is � 2n/2 blocks, with n the blocksize of the underling 
ForkSkinny cipher. This implies that SAEF guarantees qualitatively stronger security 
than claimed in the original submission at unchanged quantitative levels. With the effi-
ciency gain due to ForkSkinny, SAEF is conjectured to outperform COLM instantiated 
with the SKINNY tweakable blockcipher (with the same parameters). 

Theorem 1 ([8]). Let F be a tweakable forkcipher with n-bit block. Then for any nonce-
≤ 2n−1misuse adversary A who makes at most qe encryption queries, at most qv decryp-

tion queries such that the total number of forkcipher calls induced by all the queries is at 



most σ, we have 

3 · σ2 
oprpf prtfpAdv (A) ≤ Adv (B) + SAEF[F] F 2n+1 

auth prtfp σ2 + 4 · qv
AdvSAEF[F](A) ≤ AdvF (C) + 

2n 

for some adversaries B and C, each making at most 2σ queries, and running in time given 
by the running time of A plus γ · σ for some “small” constant γ. 

Use Cases. The newly-proved security properties of SAEF will greatly benefit lightweight 
applications (such as consumer grade and low-power IoT), where it is often necessary to 
compute ciphertext blocks on-the-fly with constant memory and/or latency. Devices used 
in the said applications additionally come with stringent cost constraints and often get 
inadequate security as a consequence [25, 24], and would thus greatly benefit from a 
lightweight AEAD scheme with robust security. We exemplify how an OAE secure scheme 
can be useful in the context of lightweight cryptography applications. 

Nonce reuse in lightweight applications. Many lightweight applications have stringent cost 
constraints on the embedded platforms they use. The pertinent platforms thus cannot ben-
efit from most robust HW, while at the same time, these HW platforms may realistically be 
exposed to physical attackers in many applications (outdoor smart-home equipment acces-
sible from the street, smart city infrastructure being exposed by its very nature, intelligent 
building sensors and actuators being accessible from maintenance access ports etc). As a 
consequence, certain sources of accidental nonce reuse (such as a reset occurring during 
counter incrementation, lack of persistent storage to store nonce value between resets etc) 
may be exploited, or even artificially amplified by an attacker with physical access. Having 
an AE scheme that is both sufficiently lightweight and maintaining a well-defined level of 
security in face of nonce-reuse is truly valuable in such a cases. 

Nonce reuse and short messages. Informally speaking, the schemes secure in the sense 
of the MRAE notion [31] will retain the same security as nonce-based AEAD, even if 
nonces repeat arbitrarily, except for unavoidably leaking the information that the complete 
plaintext tuple (N, A, M) repeats (because this implies repetition of ciphertexts). For 
encryption queries with a single-block plaintext (up to 8 or 16 bytes with the algorithms 
in the ForkAE family), the security afforded by OAE schemes is equivalent with that of 
MRAE schemes, as the leakage of the length of longest common blockwise prefix is the same 
as leakage of plaintext equality. The main use case targeted by ForkAE are applications 
where the communication is dominated by (very) short messages. An application would 
thus get the “best possible” nonce-misuse protection for a majority of messages while 
benefiting from the efficiency of an OAE scheme. 

OAE-aware engineering. In 2015, Hoang et al. warned that OAE confidentiality guarantees 
are not as strong as originally believed [22]. They presented the CPSS (chosen prefix 
secret suffix) attack, which recovers a valuable secret string that is placed in many OAE 
encryption queries of the same session. More precisely, if sufficiently many plaintexts are 
composed by appending such a secret string S to an attacker-controlled variable-length 
prefix P with a small enough granularity b (typically b = 8 for a byte), then the attacker 
can recover S in a chosen plaintext attack with a query complexity d|S|/be ∗ 2b by using 
the prefix-preservation property to exhaustively search for the value of one byte of S after 
another. Hoang et al. gave the HTTP session cookie as an example of such a setting; in 



the context of lightweight-crypto applications, an example of such a repeatedly used secret 
string are device authentication passwords, such as used for MQTT [33]. 

While OAE falls prey to CPSS attack in general, its confidentiality guarantees are still 
sufficient in many applications, if sufficient attention is given to the design of the the 
higher-level security layer using the OAE scheme. To counter CPSS, it is sufficient to 
ensure that a repeatedly used high-value secret is only preceded by a fixed-size prefix. 
This is also the case for the password field in MQTT’s CONNECT packet, provided the 
implementation does not allow the clientID and userName fields to be changed arbitrarily. 

Blockwise encryption for external flash. Applications under the umbrella of “Internet of 
Things” typically comprise connected devices based on low-cost embedded platforms (the 
“Things”). External flash memory is used in many such applications to extend the storage 
capacity of such platforms; the advantage is its low cost, the downside is that it is extremely 
easily accessible to an attacker with a physical access to the device. Even if care is taken 
not to store any sensitive data on the external flash, this is unavoidable in some cases. 
For example, a new firmware image received during a remote firmware update in a micro-
controller may not fit into the internal flash memory alongside the currently running image, 
and so is routinely stored in the external flash until the update is complete. In order to 
protect valuable intellectual property, as well as prevent malicious firmware modifications, 
the firmware image must be encrypted an authenticated. 

In a typical configuration (such as in the popular Nordic NRF52840 [32] to give an example) 
the received firmware image is highly unlikely to fit into the RAM, which means that the 
micro-controller has to compute the ciphertext on the fly and write first ciphertext blocks 
to the external flash memory, possibly before the last blocks of the new image have been 
received. An OAE secure scheme is a very useful tool in this case, because it allows 
exactly this kind of on-the-fly processing, and offers provable security guarantees against 
(physical) attackers that may tamper with the firmware image adaptively, while observing 
the ciphertext blocks already written. 

This observation generalizes to any other large amounts of data that need to be stored on 
the external flash and require authenticated encryption. 

3.4 n-bit Secure RPAEF for Longer Messages 

In addition to SAEF and PAEF, in [10] Andreeva et al. also propose a new authenticated 
encryption mode called RPAEF (for Reduced PAEF). RPAEF (ee Figure 3. ) can be seen 
as the mode ΘCB with a new, forkcipher based finalization. 

Namely, it uses a single branch of the ForkSkinny primitive for all but the finalization 
call where both branches of ForkSkinny are evaluated. The authentication in RPAEF 
is enabled by an aggregate message blocks sum which is fed into the final ForkSkinny 
tweak. In terms of number of executed primitive rounds, RPAEF is always (for all message 
lengths) more efficient than the respective tweakable blockcipher modes. 

When instantiated with ForkSkinny, RPAEF computes the equivalent of ` − 1 calls to 
SKINNY and 1 call to ForkSkinny for a message of ` blocks as compared to at least 
`+1 SKINNY calls in the most optimal ΘCB tweakable cipher mode. This general RPAEF 



Fig. 3: The encryption algorithm of RPAEF[F] mode. The picture illustrates the processing of AD when 
length of AD is a multiple of n (top left) and when the length of AD is not a multiple of n (top right), 
and the processing of the message when length of the message is a multiple of n (bottom left) and when 
the length of message is not a multiple of n (bottom right). The white hatching denotes that an output 
block is not computed. If |M | = 0, the tag is equal to TA; else if |A| = 0, the AD processing is skipped. 

mode optimization comes at the cost of using of large tweaks (as large as 256 bits) in the 
final ForkSkinny call and increased HW area footprint. 

Security-wise, a similar proof to the proof of the PAEF construction applies to RPAEF 
and this is formally proven in Section 6.7, Theorem 3, [10] showing that RPAEF achieves 
optimal n-bit quantitative security. 

Implications. RPAEF is the second parallel AE mode (after PAEF) that offers full n-
bit security and in the spirit of the past CAESAR AE competition places ForkAE in a 
category of lightweight authenticated encryption schemes with high security margin and 
hence the ‘defense in depth’ category. From a practical perspective, this enables use cases 
where the key will never be refreshed and enables life-long device utilization span. 

3.5 Counter Mode Beyond Birthday Secure Encryption 

In [7] the authors introduce a generic CTR encryption mode GCTR that uses an multi-
forkcipher (and forkciphers in particular) as an underlying primitive on inputs a message 
M , a nonce N , a block counter j (as the conventional nonce-based CTR mode), and an 
additional random IV . The work gives the security analysis of 36 “simple and natural” 
GCTR variants and an additional GCTR-X slightly more involved variant under the nivE 
security notion by Peyrin and Seurin from [26]. The authors identify numerous security and 
efficiency advantages and tradeoffs of these modes both in general and more concretely, 
when the modes are instantiated with ForkSkinny. 

The results show that many of the schemes achieve from well beyond birthday BB to full 
n-bit security under nonce respecting adversaries and some even beyond birthday BB and 
close to full n-bit security in the face of realistic nonce misuse conditions. Most variants’ 
security bounds are better than that of classical CTR mode, which becomes void at ≈ 2n/2 

processed blocks. 

The authors give a comparison of GCTR using ForkSkinny (a multi-forkcipher MFC 
with two branches s = 2) with the traditional CTR and the more recent CTRT modes 
where both are instantiated with the SKINNY tweakable cipher. The estimations show 
that GCTR with ForkSkinny can achieve an efficiency advantage over 20% for the 



longer messages. The efficiency comparison between GCTR, CTRT and basic CTR in [7], 
Figure 4 is done by comparing the total number of primitive rounds for instances based 
on ForkSkinny [29]. The figure illustrates that the number of rounds required for a 
GCTR2-ForkSkinny is smaller than CTR-SKINNY and CTRT-SKINNY for all values of 
queried bytes. In fact, any GCTR2-ForkSkinny mode with t = 2n is still more efficient 
than the CTRT-SKINNY mode with t = n. 
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Fig. 4: Efficiency comparison of any GCTR2 mode (instantiated with ForkSkinny) with 
CTR and CTRT modes (instantiated with SKINNY). These plots show the number of 
rounds required to process the queried bytes (snσ/8). The left figure corresponds to the 
input size n = 64 bits whereas the right figure corresponds to the input size n = 128 bits. 

Implications. In lightweight scenarios where no explicit authentication is required or 
when a lightweight encryption scheme is used for randomness or subkey generation Fork-
Skinny in a GCTR mode can in a very efficient way offer the highest n-bit securiy both 
in the nonce misuse and nonce respecting scenarios. This brings in an additional aspect of 
the ‘defense in depth’ power of the ForkSkinny primitive when used in an counter-style 
encryption. 

4 SW and HW Implementation Results 

In ASIACRYPT 2019 Andreeve et al. [10] published the first work (up to our knowledge) 
that shows optimizied ForkAE HW implementations and performance comparisons (in-
cluding the RPAEF mode). More concretely, Section 7, Table 10 of this work provides a 
hardware comparison of the three modes PAEF, SAEF and RPAEF (instantiated with dif-
ferent ForkSkinny variants) with Sk-AEAD. The Sk-AEAD is the tweakable cipher mode 
TAE [23] instantiated with Skinny-AEAD M1/M2, M5/M6 [13]. Based on the round-based 
implementations all these three modes are shown to perform faster (in terms of cycles) for 
short data (up to 3 blocks) with about the same area. RPAEF beats its competitor for 
all message sizes at the cost of a area increase of about 20% (for only one of its variants). 
The performances are further optimized by exploiting the in-built parallelism (//)in the 
ForkSkinny primitive. This allows for further improved performance results with that 
strategy to be obtained. For messages up to three 128-bit blocks, the speed-up of PAEF 
and SAEF (both parallel(//)) ranges from 25% to 50%, where the advantage is largest for 



the single-block messages. Most importantly, the RPEAF, PAEF, and SAEF(//)instances 
result in fewer cycles than the θCB variants for all message sizes at a small cost in area 
increase. However, the relative advantage of the latter instances is more explicit for short 
messages; as it diminishes asymptotically with the message blocks. For message sizes up 
to 8 bytes the PAEF-ForkSkinny-64-192 instances are more than 58% faster with also a 
considerably smaller implementation size. We refer the reader for detailed read to Section 
7, Table 10 of [10]. Building on the latter work Purnal et al. [29] worked on optimized 
HW implementations of ForkAE in the First NIST 2019 workshop. 

4.1 Improved HW Implementation Strategies 

In his recent master thesis [27] on the topic also studies HW optimizations with a main 
focus on area and throughput efficiencies. The thesis offers two new (Restart and Re-
trace) area-focused architectures which are compared with a balanced (Forkreg) and a 
throughput-focused (Parallel) architecture. The work focuses on primitive-level optimiza-
tions regarding the the ForkSkinny cipher. Overall, the work explores 4 architectures: 

– Parallel: This implementation calculates the two ForkSkinny branches simultane-
ously in parallel. When looking at area-effciency, this design is worse than a serial 
implementation. However, it does not take up double as much area as one might as-
sume when thinking of an implementation with dual parallelism. For small messages, 
a round-based encryption-only Parallel ForkSkinny implementation can have higher 
throughput and area than the round-based encryption-only SKINNY [4]. 

– Forkreg: an extra block-sized register called the fork register is used to store the fork-
state and to read this state once the ciphertext part C0 has been calculated. 

– Restart: This architecture restarts from the beginning once C0 is ready to compute the 
other branch. The main drawback is that the plaintext-data must remain available for 
at least rinit + r0 rounds. 

– Retrace: This architecture is more flexible than Restart. It allows for both encryption 
and decryption and the plaintext can be forgotten once the internal state has been 
loaded. This is accomplished by, once C0 has been calculated, decrypting the internal 
state back up to the point of the fork and then re-encrypting it to become C1. 

The latter three area-efficient architectures (excluding the parallel) are compared to a 
SKINNY implementation (see Table 5) where the results were obtained using the NanGate 
45NM library for ASICS under normal operating conditions, and where no clock gating 
or latches are used, as well as a similar datapath sizes of one sixteenth of the block size 
are used. For the ForkSkinny implementations, the throughput is defined as a range 
instead of a fixed number. This is to account for the fact that for very short messages, 
the throughput is effectively doubled if both outputs of the forkcipher are used. As such, 
the range is defined as worst case (very long messages) to best case (very short messages). 
An important result to note is that the Restart ForkSkinny-128-288 implementation 
uses less area than the Skinny-128-384 implementation. This is due to the fact that both 
ForkSkinny-128-192 and ForkSkinny-128-288 only need a half block-sized register to 
store the final block of the tweakey state, whereas Skinny-128-384 uses a full block-sized 
register to store the final part of the tweakey state. 

These results show that the in the Retrace architecture, the possibility to decrypt comes 
nearly for free in terms of area – there is only a very small area-difference between the 



encryption-only and encryption/decryption implementation. As the number of cycles for 
a decryption of the ForkReg and Retrace architecture are the same, an area-efficient de-
sign that must mainly decrypt messages and only rarely encrypt them should probably 
use the Retrace architecture. A significant difference between encryption-only and encryp-
tion/decryption Retrace architecture is the critical path, which does change by a large 
amount when going from encryption-only to encryption/decryption, especially for the 128-
288 architecture. The encryption/decryption design of Retrace can have higher through-
put when decrypting messages (for small messages) than encryption/decryption SKINNY. 
This is mainly due to the fact that decrypting requires the key to be updated before the 
real decryption can begin, which nearly doubles the amount of cycles for SKINNY and 
Forkreg ForkSkinny but the increase in cycles is (relatively speaking) less pronounced 
for Retrace ForkSkinny. The area penalty of forking in an encryption/decryption imple-
mentation of ForkSkinny can be hidden almost entirely at the cost of cycles necessary 
to process message blocks. 

Fig. 5: Results for the different word-based implementations 

4.2 Improved SW Implementation 

The main contribution of the work of [16, 17] is the development of an optimized software 
implementations for ForkAE. 

The authors analyze the performance and efficiency of different ForkAE implementations 
on two embedded platforms: ARM Cortex-A9 and ARM Cortex-M0. 

The first improvement deals with the portable ForkAE implementations. A decryption 
optimization technique is applied which allows to accelerate the existing portable im-
plemetation of [36] for decryption by up to 35%. 

Secondly, platform-specific software optimizations are explored. In platforms where cache-
timing attacks are not a risk, the authors present an S-box implementation which improves 
the performance of the ForkSkinny round function and contributed to a more efficient 
desing for table based implementations. More generally, on such platforms the SKINNY 
round function and inverse round function can be transformed into a combination of table-
lookups which allows to for a significant increase in performance. Compared to the existing 
portable implementations, the latter technique speeds up both encryption and decryption 
by 20% and 25%, respectively. The impact on the amount of memory needed for this 
implementation can be minimised by reducing the number of tables. 



Furthermore, [16, 17] propose a set of platform-specific optimizations for processors with 
parallel hardware extensions such as ARM Neon. Without the need of relying on paral-
lelism provided by long messages (bitsliced implementations), the authors focus on the 
data-level parallelism in ForkSkinny. The latter can be used to increase efficiency and 
reduce latency for the small messages that are typical in IoT applications and are the 
target use case for the ForkAE algorithm. 

Finally, the performance of the implementations on the ARM Cortex-M0 and ARM 
Cortex-A9 processors are benchmarked and a comparison with the other SKINNY-based 
schemes in the NIST lightweight competition – SKINNY-AEAD and Romulus is given. We 
elaborate on the performance comparison from this work of ForkAE with other SKINNY-
based AEAD schemes Romulus and SKINNY-AEAD in in Figure 6a and Figure 6b from 
[17]. The primary instances of the NIST LWC submission for small messages with differ-
ent number of message (M) and associated data (A) blocks are compared. These figures 
highlight the advantage of a forkcipher over a blockcipher for encryption of small messages. 
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Fig. 6: Performance comparison of SKINNY based ciphers on Cortex-A9 from [17]. En-
cryption with implementations from [36]. Decryption with SKINNY, Romulus and PAEF-
ForkSkinny-128-288(1) implementations from [36] and PAEF-ForkSkinny-128-288(2) 
implementation with preprocessed tweakey schedule. 

Table-based Implementations The lookup table round function is implemented on 
the STM32F0 platform with the ARM Cortex-M0 processor as an example lightweight 
platform with no cache. Then, the different trade-offs between speed, code size and memory 
usage are explored. Table 1 lists the results for an implementation with 4 different lookup 
tables. Compared to the portable implementations of [36], it needs up to 16% fewer clock 
cycles when the tables are stored in ROM. When the tables are stored in RAM, this gain 
is almost 20%. 

ForkSkinny gains here in speed in exchange for a higher memory cost. Particularly, 
when four lookup tables are used in combination with two tables containing the mixed 
and shifted round constants, a total of 4.7 kB of memory is needed. We show that the 
impact of the lookup table implementation on the memory usage can be greatly reduced 
when only one T -table is used instead four. The performance results for this method are 



listed in Table 1. This approach introduces some extra calculations in the round function, 
but as can be seen from the results, the impact on the computation time is only a few 
cycles per byte. The reduction in memory cost of 3 kB is significant and can be very 
important for the resource-constrained devices in embedded applications. 

Table 1: Implementation figures for the table-based ForkAE encryption implementation 
on the ARM Cortex-M0 from [17]. 

Encryption Tables in ROM Tables in RAM 

4 lookup tables c/B ROM RAM c/B ROM RAM 

PAEF-FS-128-192 
PAEF-FS-128-256 
PAEF-FS-128-288 
SAEF-FS-128-192 
SAEF-FS-128-256 

1 lookup table 

2110 
2111 
2859 
2128 
2129 

6752 
6748 
7034 
6688 
6674 

192 
200 
220 
192 
200 

2016 
2017 
2739 
2035 
2035 

1960 
1956 
2242 
1896 
1882 

4984 
4992 
5012 
4984 
4992 

PAEF-FS-128-192 
PAEF-FS-128-256 
PAEF-FS-128-288 
SAEF-FS-128-192 
SAEF-FS-128-256 

2138 
2139 
2919 
2157 
2157 

3692 
3688 
3980 
3628 
3614 

192 
200 
220 
192 
200 

2030 
2031 
2805 
2049 
2049 

1972 
1968 
2260 
1908 
1894 

1912 
1920 
1940 
1912 
1920 

To study the gain of tabulating the inverse round function, the performance of one spe-
cific implementation for table-based decryption is analysed. The implementation uses one 
lookup-table that is stored in ROM and a preprocessed tweakey schedule that is stored 
in RAM. The performance metrics are listed in Table 2. When this is compared with the 
portable decryption implementation, it can be seen that using lookup tables can signifi-
cantly speed-up decryption, as the amount of cycles that are needed is reduced with up 
to 25%. This speed-up is higher than for encryption because of the simpler inverse round 
function where the addition of the round tweakey and constants can be done at the end. 

Table 2: Implementation figures for the table-based ForkAE decryption implementation 
on the ARM Cortex-M0. 

Decryption c/B ROM RAM 

PAEF-FS-128-192 2241 3261 818 
PAEF-FS-128-256 2241 3253 826 
PAEF-FS-128-288 3156 3529 958 
SAEF-FS-128-192 2259 3317 818 
SAEF-FS-128-256 2257 3303 826 

Parallel Implementations In Table 3 the performance of ForkAE encryption and de-
cryption on the ZYBO platform is illustrated when the Neon SIMD implementations are 
used. For ForkSkinny instances with a block-size n = 128, the S-box and its inverse 
are replaced with the 128-bit Neon implementation. For PAEF-ForkSkinny-64-192, the 
ForkSkinny implementation with parallel round function is used for encryption. Its de-
cryption only features the parallel S-box layer, as it cannot benefit from parallelism in the 
round function. 

For the 128-bit instances with the Neon S-box implementation, we observe a reduction in 
the amount of cycles for encryption and decryption of approximately 30% when compared 



to the portable implementations of [36]. For the PAEF-ForkSkinny-128-288 instance with 
three tweakey matrices, this speed-up is a bit lower (27%). This can be explained by the 
larger relative importance of the tweakey calculations in this instance. The ROM size is 
reduced by approximately 500 bytes in all 128-bit instances. This follows from the smaller 
code size of the round function, which now uses the parallel Neon S-box implementation. 
The amount of RAM needed for encryption or decryption remains the same. 

Table 3: Implementation figures for the Neon SIMD implementations of ForkAE on the 
ZYBO platform. 

Encryption Decryption 

c/B ROM RAM c/B ROM RAM 

PAEF-FS-64-192 1184 3235 331 1390 2653 392 
PAEF-FS-128-192 736 2619 161 807 2551 810 
PAEF-FS-128-256 737 2651 169 806 2583 818 
PAEF-FS-128-288 1026 2863 189 1078 2783 950 
SAEF-FS-128-192 743 2491 161 812 2415 810 
SAEF-FS-128-256 743 2519 169 810 2419 818 

The execution time of PAEF-ForkSkinny-64-192 encryption improves with almost 500 
cycles per byte, for example 29%, when compared to the portable implementation from 
[36]. For decryption, the speed-up is smaller as the degree of parallelism is lower. With 
the Neon inverse S-box implementation, we still accelerate decryption with 17%. 

A single round of the 64-bit SKINNY round function with a Neon S-box implementation 
executes in 95 clock cycles on the ARM Cortex-A9. With 17 rounds before the forking point 
and 23 rounds after the forking point, a single branch of the ForkSkinny primitive, which 
is equal to the execution of the SKINNY primitive, needs 40 of these rounds. Producing 
twice as much output by calculating both branches requires 17 + 2 × 23 = 63 such rounds, 

63 or 40 = 1.58 times the amount of computations. When the S-box is calculated in parallel 
for the branches after the forking point, two rounds are calculated in 112 clock cycles 
instead of 2 × 95. This way producing the double output requires only 1.10 times the 
amount of execution time of a single branch. 

Other SKINNY-based candidates need M +1 calls to the SKINNY primitive for M message 
blocks, while ForkAE, which has no fixed cost, needs M calls to the ForkSkinny primitive 
(with 1.10 times the computational cost). As a result, for implementations where no mode 
parallelism is exploited (for serial modes, like Romulus), ForkAE encryption will be faster 
for messages of up to 10 blocks. This is illustrated in Figure 7. Note that the SKINNY-
AEAD and Romulus submissions to the NIST LWC competition do not include an instance 
with 64-bit blocks. However, when 256-bit SIMD hardware is available, this result could 
also be extended to the 128-bit instances. 

5 Conclusion and future work 

ForkAE is an efficient candidate for its core targeted setting of applications with short 
messages, however in the light of the recent results, it is also emerging as a suitable design 
for efficient (authenticated) encryption for longer messages. ForkAE has also been shown 
to give very strong security guarantees and can rightfully be placed in a category of efficient 
lightweight schemes providing ‘defense in depth’. As illustrated, ForkAE with its SAEF 
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Fig. 7: Comparison of encryption time of 64-bit ForkAE implementations with SKINNY-
AEAD, expressed in number of equivalent calls to SKINNY primitive. 

mode achieves security even in the face of attackers exploiting nonce repetitions and/or 
being able to adaptively change the chosen plaintext block-by-block, which pose a very 
realistic attack vector in the lightweight setting due to the frequently constrained nature 
of the used HW platforms, frequent exposure to powerful attacks,or due to the distributed 
and hence ‘unsupervised’ nature of some of the applications. Additionally, PAEF and 
RPAEF achieve full n-bit security relevant for example in use cases where the key will 
never be refreshed and life-long devices with frequent utilization span is expected, or when 
the use of the most lightweight primitives (with 64-bit block) is desirable. Additionally, 
we show that the ForkSkinny primitive also lends itself well to the ‘defense in depth’ 
design aspect when the ForkSkinny primitive is used in an counter-style encryption. 

ForkAE is flexible to be used in various modes, covering the needs of both fast and robust 
encryption. An interesting avenue is to explore the improvements offered by the Fork-
Skinny when used in an authentication-only mode. Our preliminary observations indicate 
both robust beyond birthday bound security and efficiency advantages. 
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