
Performance Evaluation of Cryptographic 
Permutations for the Internet of Things 

Luan Cardoso dos Santos and Johann Großschädl 

SnT and DCS, University of Luxembourg 
6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg 

{luan.cardoso,johann.groszschaedl}@uni.lu 

Abstract. Permutation-based symmetric cryptography has be become 
increasingly popular over the past 10 years, especially in the lightweight 
domain. More than half of the 32 second-round candidates of NIST’s 
lightweight cryptography standardization project are permutation-based 
designs or can be instantiated with a permutation. The performance 
of a permutation-based construction depends, among other aspects, on 
the rate (i.e. the number of bytes processed per call of the permutation 
function) and the execution time of the permutation. In this paper we 
analyze the execution time and code size of assembler implementations 
of the permutation of ASCON, Gimli, SCHWAEMM, and Xoodyak on 
an 8-bit AVR and a 32-bit ARM Cortex-M3 microcontroller. We aim to 
evaluate how well these four permutations perform on microcontrollers 
with very di˙erent architectural and micro-architectural characteristics 
such as the available register capacity or the latency of multi-bit shifts 
and rotations. We also determine the impact of fash wait states on the 
execution time of the permutations on Cortex-M3 development boards 
with 0, 2, and 4 wait states. Our results show that the throughput (in 
terms of permutation time normalized by the rate) of the permutations 
of ASCON, SCHWAEMM, and Xoodyak is very similar on Cortex-M3 
and lies in the range of between 24 and 29 cycles per byte. However, on 
8-bit AVR, the permutation of SCHWAEMM signifcantly outperforms 
the other permutations by a factor of between 1.55 and 2.10. 

1 Introduction 

The term Internet of Things (IoT) describes the development of the Internet 
from a computer network to a network that connects all kinds of “smart” de-
vices, thereby enabling them to communicate with each other or transmit data 
to central servers. This development started about 15 years ago, when more 
and more everyday objects (e.g. household appliances) but also machines and 
vehicles were equipped with small microcontrollers and components for wireless 
communication (e.g. ZigBee, Bluetooth, WiFi, 5G). These devices di˙er greatly 
in terms of the computing power they have, but also in terms of data transfer 
speeds and memory capacity. At one end of the spectrum are e.g. modern cars, 
which are equipped with very powerful processors, whereas e.g. battery-powered 

mailto:luan.cardoso,johann.groszschaedl}@uni.lu


2 L. Cardoso dos Santos et al. 

miniature sensor nodes at the other end of the spectrum can often only be oper-
ated with small 8-bit microcontrollers. Already today, about twice as many of 
such “smart things” are connected to the Internet than ordinary computers like 
PCs or laptops, and this proportion will grow rapidly over the next few years. 
Internet-enabled devices can be found in almost all areas of our daily life, from 
home automation over industrial production (“Industry 4.0”) to transportation 
and logistics. 

The IoT can be seen as a large ecosystem populated by highly diverse and 
heterogeneous devices, which come in all shapes and sizes. Therefore, it is little 
surprising that there exist dozens of di˙erent (and largely incompatible) micro-
controller platforms, operating systems, and wireless communication standards 
for the IoT, many of which are optimized to serve a certain application domain 
with specifc requirements and constraints. This heterogeneity of IoT devices 
is in stark contrast to the “monoculture” in the realm of classical computers 
like PCs or laptops, where the 64-bit Intel architecture has a market share of 
well over 90%. Nonetheless, 64-bit Intel (and compatible) processors represent 
only a tiny fraction of the IoT altogether, in which 8, 16, and 32-bit microcon-
trollers clearly dominate in terms of quantity. For example, 8-bit architectures 
like AVR and PIC are widely used in smart cards, wireless sensor nodes, and 
industrial control systems. On the other hand, 16-bit platforms, such as MSP430 
or 68HC16, are very popular in the medical and automotive domains. Finally, 
32-bit microcontrollers, e.g. the ARM Cortex-M series, play an important role 
in various embedded/IoT applications, ranging from consumer electronics to 
military equipment. Currently, the ARM architecture is the market leader in the 
32-bit segment, but it faces increasing competition by ESP32 and RISC-V. 

Since there is no single dominating microcontroller platform in the IoT, it is 
essential that cryptographic algorithms achieve consistently good performance 
on a wide variety of 8, 16, and 32-bit architectures. This is far from trivial 
since, for example, a 32-bit ARM Cortex-M3 microcontroller has much di˙erent 
architectural and micro-architectural characteristics than an 8-bit AVR ATmega 
microcontroller. The former has 16 registers, of which 14 are available for general 
use, i.e. the general-purpose register space amounts to 448 bits. AVR microcon-
trollers, on the other hand, have 32 general-purpose registers, but each of them 
can only take 8 bits of data, which means the usable register space is 256 bits. 
ARM and AVR also di˙er signifcantly in their ability to execute multi-bit shifts 
and rotations, which are performance-critical operations of many symmetric 
cryptosystems. The arithmetic/logic unit of ARM microcontrollers features a 
fast barrel shifter capable to shift or rotate a 32-bit word by an arbitrary amount 
of bits in a single clock cycles. Furthermore, a shift or rotation can be combined 
with many other arithmetic/logical instructions, which means multi-bit shifts 
and rotations are essentially free on ARM. The situation is completely di˙erent 
for 8 and 16-bit architectures since most of them have only single-bit shift and 
rotation instructions, which means that shifting or rotating a register by n bits 
takes (at least) n + 1 clock cycles. Hence, performing a shift or rotation of a 
32-bit word on AVR can, in the worst case, require dozens of clock cycles. 



3 Performance Evaluation of Cryptographic Permutations for the IoT 

In this paper we analyze and compare the multi-platform eÿcency of four fam-
ilies of cryptographic permutations that form part of second-round candidates in 
the current lightweight cryptography standardization project of the US National 
Institute of Standards and Technology (NIST). These second-round candidates 
are ASCON [4], Gimli [2], SCWAEMM [1], and Xoodyak [3], all of which do 
not only provide Authenticated Encryption with Associated Data (AEAD) but 
also hashing. Furthermore, they have in common that the size of their state 
is similar (i.e. between 320 and 384 bits) and they all consist of only simple 
arithmetic/logical operations (SCHWAEMM is a classical ARX construction, 
while ASCON, Gimli, and Xoodyak can be characterized as “AndRX” designs, 
which means they use the logical AND operation as source of non-linearity). We 
evaluate the execution time and code size of the four permutations with highly-
optimized Assembler implementations for ARM Cortex-M3 and AVR ATmega 
microcontrollers, whereby we applied the same general optimization strategies 
and invested a similar amount of optimization e˙ort for each implementation to 
ensure a fair and consistent evaluation. By focusing solely on the permutations, 
we aim to make their relative performance more transparent and produce new 
insights into their multi-platform eÿciency, which are not immediately apparent 
when comparing the execution times collected by other benchmarking initiatives. 

2 Overview of the Permutations 

In this section we briefy summarize the main properties of the four permutations 
we consider in this paper. 

ASCON. The main components of ASCON and ASCON-HASH are two 320-
abit wide permutations (called in their specifcation p and pb) that apply an 

SPN-based round transformation to ASCON’s internal state. The permutation 
operates over the state as fve 64-bit words. This permutation is inherently 
bitsliced and resistant to cache-timing attacks, as it can be implemented without 
lookup tables using only Boolean operations and rotations [4] 

Gimli. Gimli uses a 384-bit bit permutation, designed for achieving security 
and performance on a wide range of platforms, from 64-bit server-class CPUs 
to small 8-bit microcontrollers, as well as FPGAs and ASICs. The permutation 
applies a sequence of rounds to its state, viewed as a 3 × 4 matrix of 32-bit 
words, with each round composed of (i) a non-linear 96-bit SP-box, (ii) a linear 
mixing layer applied every second round, and (iii) a constant addition every 
fourth round [2]. 

SPARKLE. The NIST lightweight crypto proposals ESCH and SCHWAEMM 
use the SPARKLE family of permutations. SPARKLE defnes permutations over 
blocks with 256, 384, and 512 bits, parameterized by a number of steps, analogous 



4 L. Cardoso dos Santos et al. 

to a round number. The permutation consists of two main components: An ARX-
box (called Alzette) that operates as a 64-bit block cipher with a 32-bit key, and 
a Linear di˙usion layer. The design follows the classical SPN constructions and 
lends itself well to SIMD implementations [1]. 

Xoodoo. Xoodoo is a family of 384-bit permutations, operating over twelve 
32-bit words, parameterized by the number of rounds. It defnes the internal 
state as a 3 × 4 × 32 bit matrix, and is composed of a round function with fve 
main components: two plane shiftings, a mixing layer, constant addition, and a 
non-linear layer. This construction is claimed to be eÿcient in low-end processors 
and is used as the core for Xoodyak and Xoo˙f [3]. 

3 Implementation and Evaluation 

To ensure a fair and consistent evaluation of the four permutations, we applied 
the same implementation and optimization strategy to each permutation, and 
we put a similar e˙ort into optimizing each implementation. This section gives 
and overview of our optimization strategies for ARM and AVR, and describes 
how we benchmarked the permutations. 

The assembly implementations for the ARM Cortex-M3 platform are purely 
speed-optimized, which means whenever there was a trade-o˙ to be made be-
tween execution time and code size, we opted for the optimization that led to 
the best performance. This means, for example, that the main loop of each 
permutation is fully unrolled to eliminate the loop overhead. Round constants 
are not kept in tables in fash or RAM, but put into registers on the fy using 
movw and movt instructions or, if they are less than 12 bits long, directly encoded 
into an instruction as intermediate value. Such speed-optimized implementations 
have been developed by the designers of the permutations; we used these imple-
mentations as starting point and made some small modifcations to increase the 
readability of the source code (e.g. by using macros) and ensured that they all 
adhere to the specifcation of the ARM Application Binary Interface (ABI). For 
example, the ABI specifcation requires that the stack pointer is double-word 
(i.e. 8 bytes) aligned at a public interface; when necessary we modifed the source 
code to ensure full ABI compliance. We also translated the assembler source code 
of Gimli from the GNU assembler syntax to the syntax used by Keil MicroVision 
so that its execution time can be determined with Keil’s cycle-accurate simulator 
and by execution on development boards using the GNU toolchain for ARM. 
The original ARM implementation of ASCON provided by its designers was 
written in the form of “inlined” assembly code for the permutation. We converted 
this implementation into a pure assembly function to ensure consistency across 
all four permutations. 

Our assembly implementations of the permutations for the 8-bit AVR ar-
chitecture aim for small (binary) code size instead of high speed. Therefore, 
we refrained from code-size increasing optimization techniques like (full) loop 
unrolling as otherwise the code size would become unreasonably large. This can 



5 Performance Evaluation of Cryptographic Permutations for the IoT 

be exemplifed using the AVR assembler implementations of Gimli (provided 
by its designers) as case study. One of these implementations is size-optimized 
and, therefore, relatively small (less than 800 bytes), whereas the other is speed-
optimized (with fully unrolled loop) and has a code size of more than 19 kB. 
For comparison, the code size of the fully-unrolled ARM implementation is less 
than 4 kB. However, it has to be taken into account that fash capacity for 
storing program code is, in general, more scarce on small and cheap devices with 
an 8-bit microcontroller than on devices equipped with a more powerful 32-bit 
ARM microcontroller. We developed the assembly implementations of ASCON, 
SPARKLE, and Xoodoo from scratch since, at the time we started with our eval-
uation of the permutations, no optimized AVR assembler code existed for them. 
However, we took over the size-optimized AVR implementation of the Gimli 
permutation developed by its designers since it complies with our optimization 
strategy. We put a similar e˙ort into optimizing the AVR implementation of the 
permutations to ensure a fair and consistent evaluation. 

We evaluated the execution time of both the AVR and the ARM implementa-
tions through simulation with a cycle-accurate instruction set simulator, namely 
the simulator contained in Atmel Studio 7 and Keil MicroVision 5.24, respec-
tively. Execution times obtained by simulation with Atmel Studio are, in general, 
very close to the timings on “real” hardware. Unfortunately, this is usually not the 
case for simulation results for ARM since, as mentioned on the Keil website1 , the 
simulator assumes ideal conditions for memory accesses and “does not simulate 
wait states for data or code fetches.” Therefore, the timings obtained with the 
simulator should be seen as lower bounds of the actual execution times one will 
get on a real Cortex-M3 device. In order to get realistic performance fgures, 
we also measured the execution time of the permutations on three development 
boards with a di˙erent number of fash wait states. The frst board is the STM32 
VL Discovery, which is equipped with an STM32F100RBT6B Cortex-M3 micro-
controller clocked with a nominal frequency of 24 MHz. Due to this relatively 
low clock frequency, the microcontroller can access fash memory without wait 
states. Our second board is again an STM32 board, but a more sophisticated one, 
namely the STM32 Nucleo-64. It comes with an STM32F103RBT6 Cortex-M3 
microcontroller clocked with a frequency of 72 MHz. At this frequency, fash 
accesses require two wait states. Finally, the third board is an Arduino Due, 
which houses an Atmel SAM3X8E Cortex-M3 microcontroller clocked with a 
frequency of 84 MHz. When operated with its standard confguration, fash 
accesses require 5 wait states. However, the performance impact of this high 
number of wait states is, to some extent, mitigated by a “fash accelerator.” 

4 Results 

Table 1 compares the execution time and code size of speed-optimized (i.e. 
fully unrolled) assembly implementations of the four permutations ASCON128a, 
Gimli, SPARKLE384, and Xoodoo. These execution times have been determined 
1 See https://www2.keil.com/mdk5/simulation (accessed 2020-09-14) 

https://www2.keil.com/mdk5/simulation


6 L. Cardoso dos Santos et al. 

Table 1. Code size, execution time, and throughput of speed-optimized ARMv7-M 
assembly implementations of the four permutations on a Cortex-M3 microcontroller. 

Permutation 
Code size 
(bytes) 

Exec. time 
(cycles) 

Time/rate 
(cycles/byte) 

ASCON128a (8 rounds) 1928 466 29.13 
Gimli (24 rounds) 3950 1041 65.06 

SPARKLE384 (7 steps) 2820 781 24.40 
Xoodoo (12 rounds) 2376 657 27.38 

through simulation with the cycle-accurate instruction set simulator of Keil 
MicroVision 5.24 using a generic Cortex-M3 model as target device. The times 
range from 466 clock cycles (for ASCON128a) to 1041 clock cycles (Gimli). 
However, more meaningful than the raw execution time is the execution time 
divided by the rate since this throughput determines the actual performance of 
the of the corresponding authenticated encryption algorithm. The last column 
of Table 1 specifes the throughput (in cycles per byte) of the permutations, 
which we calculated by dividing the execution time of the permutation by the 
rate2 of the main instance of the corresponding AEAD algorithm (16 bytes for 
ASCON128a and Gimli, 32 bytes for SCHWAEMM256-128, and 24 bytes for 
Xoodyak). SPARKLE384 achieves the highest throughput, closely followed by 
Xoodoo and ASCON128a. Gimli reaches less than half of the throughput of the 
other three permutations, but it has to be taken into account that the Gimli 
AEAD algorithm aims for 256 bits of security. In terms of code size, ASCON128a 
is the clear winner, while Gimli has the largest code size and is more than twice 
as big as ASCON128a. 

Table 2. Code size, execution time, and throughput of size-optimized AVR assembly 
implementations of the four permutations on an ATmega128 microcontroller. 

Permutation 
Code size 
(bytes) 

Exec. time 
(cycles) 

Time/rate 
(cycles/byte) 

ASCON128a (8 rounds) 472 6443 402.69 
Gimli (24 rounds) 778 23699 1481.19 

SPARKLE384 (7 steps) 702 8318 259.94 
Xoodoo (12 rounds) 954 13091 545.46 

Table 2 contains the code size, execution time and throughput (in terms of 
permutation time divided by the rate) of code-size optimized AVR assembly 
implementation of the four permutations on an 8-bit ATmega128 microcontroller. 
The execution times were simulated using the cycle-accurate instruction set sim-
ulator that is part of Atmel Studio 7. Apparently, the obtained AVR timings are 
2 We used the rate of the encryption operation to calculate the throughput. Note that 
Xoodyak processes associated data at a di˙erent rate than plaintext and ciphertext. 



7 Performance Evaluation of Cryptographic Permutations for the IoT 

signifcantly worse (by at least an order of magnitude) than the execution times of 
the permutations on ARM. This massive performance penalty can be explained 
by the di˙erent optimization goals (i.e. size vs. speed) and, more importantly, 
by the completely di˙erent characteristics of the architectures as mentioned 
in Section 1 (e.g. register space, latency of multi-bit shifts and rotations). In 
terms of throughput, SPARKLE384 is again the winner, but ASCON128a and 
Xoodoo swapped their position compared to the ARM results, i.e. ASCON128a 
achieves the second-best throughput and Xoodoo is on the third place. However, 
while on ARM these three permutations were throughput-wise relatively close 
to each other, we see a signifcant di˙erence on AVR since the throughput of 
ASCON128a is 1.55 times worse than the throughput of SPARKLE384, and 
the throughput of Xoodoo is even more than two times worse. We emphasize 
again that these results are based on size-optimized implementations, which 
means all four permutations can reach better throughput rates when optimized 
for speed. Such speed-optimized implementations were developed in the course 
of Rhys Weatherley’s benchmarking project for AVR and are available online3 . 
Interestingly, these benchmarking results indicate that the relative performance 
of the corresponding AEAD algorithms is very similar to our throughput results 
for the permutations, namely SCHWAEMM256-128 is signifcantly faster than 
ASCON128a and Xoodoo. 

Table 3. Execution time of the four permutations as determined by simulation with 
Keil MicroVision using a generic Cortex-M3 model and measurement on Cortex-M3 
development boards with 0, 2, and 5 fash wait states (values in parentheses are the 
performance penalties over the execution time on the VL Discovery board, which has 
0 fash wait states). 

Permutation 
Keil µVision 
(simulation) 

VL Discovery 
0 wait states 

Nucleo-64 
2 wait states 

Arduino Due 
5 wait states 

ASCON128a (8 rounds) 466 467 748 (1.60) 571 (1.22) 
Gimli (24 rounds) 1041 1043 1656 (1.59) 1287 (1.23) 

SPARKLE384 (7 steps) 781 782 1196 (1.53) 936 (1.20) 
Xoodoo (12 rounds) 657 659 1014 (1.54) 795 (1.21) 

As mentioned in the previous section, the simulation results obtained with 
Keil MicroVision may di˙er from the execution time on “real” Cortex-M3 hard-
ware since the Keil simulator does not take fash wait states into account. The 
purpose of fash wait states is to compensate the di˙erence of the maximum 
clock frequency with which the microcontroller core and the fash memory can 
be clocked. Modern Cortex-M3 microcontrollers can reach clock frequencies of 
more than 200 MHz, which is far above the maximum frequency of fash memory 
(usually between 16 to 32 MHz). Therefore, we decided to assess the impact 

3 See https://rweather.github.io/lightweight-crypto/performance_avr.html 
(accessed 2020-09-14). 

https://rweather.github.io/lightweight-crypto/performance_avr.html


8 L. Cardoso dos Santos et al. 

of fash wait states on the performance of the four permutations by measuring 
their execution time on the three Cortex-M3 development boards mentioned in 
the previous section, namely an STM32 VL Discovery (no fash wait states), 
an STM32 Nucleo-64 (2 fash wait states), and an Arduino Due (5 fash wait 
states). However, the SAM3X8E microcontroller on the Arduino board contains 
a “fash accelerator,” which is essentially a small bu˙er located between the 
microcontroller core and the fash memory, to mitigate the impact of the wait 
states. Table 3 shows the measured execution times of the four permutations 
on these boards. The timings on the VL Discovery are almost identical to those 
obtained through simulation with Keil MicroVision, which confrms that the 
Keil simulator is indeed cycle-accurate. On the other hand, the execution times 
on the Nucleo-64 board are signifcantly worse (by factors of between 1.53 and 
1.60) than the results on the Discovery board and the timings reported by the 
simulator. These results also show that fash wait states do not impact each 
permutation to the same extent since the penalty factor for ASCON128a is 
higher than the penalty factor for SPARKLE384. The timings on the Arduino 
Due are better than the timings on the Nucleo-64, despite the larger number of 
wait states, which is due to the afore-mentioned fash accelerator. 

5 Conclusions 

Since there is no single dominating platform in the IoT, designers of lightweight 
cryptographic algorithms have to aim for multi-platform eÿciency, i.e. eÿciency 
on a wide range of microcontroller architectures with highly diverse and divergent 
characteristics. In this paper we analyzed to what extent the permutations of 
the NIST candidates ASCON, Gimli, SCHWAEMM and Xoodyak achieve this 
goal, whereby we used 32-bit ARM Cortex-M3 and 8-bit AVR as evaluation 
platforms. We benchmarked speed-optimized assembler implementations for 
ARM, using source code provided by the designers, and size-optimized assembler 
implementations for AVR, which we mainly developed from scratch. Our results 
show that the throughput (i.e. permutation time divided by rate) of ASCON, 
SPARKLE, and Xoodoo is very similar on ARM and di˙ers only by a few cycles 
per byte. On the other hand, on 8-bit AVR, SPARKLE signifcantly outperforms 
ASCON and Xoodoo by a factor of 1.55 and 2.10, respectively. One reason for 
this discrepancy between the ARM and AVR results is the cost of multi-bit shifts 
and rotations, which has a signifcant impact on the overall execution time. ARM 
processors are equipped with a fast barrel shifter capable to execute multi-bit 
shift or rotation operations in one clock cycle. Sifts and rotations on ARM can 
even be combined with other arithmetic or logical operations and executed in a 
single cycle, which makes them essentially free. On the other hand, most small 
8 and 16-bit microcontrollers, including the AVR Atmega128, do not have a fast 
barrel shifter and can, therefore, only shift or rotate the content of a register 
by one bit at a time, which makes multi-bit shifts and rotations of 32 or 64-bit 
words extremely slow. Our benchmarking results indicate that the designers 
of ASCON and Xoodoo either “over-optimized” their permutations for ARM, 



9 Performance Evaluation of Cryptographic Permutations for the IoT 

or they neglected eÿciency on small 8 and 16-bit microcontrollers. On a more 
positive note, the results for SPARKLE demonstrate that it is possible to design 
a permutation for multi-platform eÿciency. 

References 

1. C. Beierle, A. Biryukov, L. C. dos Santos, J. Großschädl, L. Perrin, A. Udovenko, 
V. Velichkov, and Q. Wang. Lightweight aead and hashing using the sparkle 
permutation family. IACR Transactions on Symmetric Cryptology, pages 208–261, 
2020. 

2. D. J. Bernstein, S. Kölbl, S. Lucks, P. M. C. Massolino, F. Mendel, K. Nawaz, 
T. Schneider, P. Schwabe, F.-X. Standaert, Y. Todo, et al. Gimli: a cross-platform 
permutation. In International Conference on Cryptographic Hardware and Embedded 
Systems, pages 299–320. Springer, 2017. 

3. J. Daemen, S. Ho˙ert, G. Van Assche, and R. Van Keer. Xoodoo cookbook. IACR 
Cryptol. ePrint Arch., 2018:767, 2018. 

4. C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schlä˙er. Ascon v1. 2. Submission 
to the CAESAR Competition, 2016. 




