
Optimizing Honest Majority Threshold Cryptosystems

Ivan Bjerre Damgård, Aarhus University 2020
Based on ”Efficient Threshold RSA Signatures with General Moduli and No Extra Assumptions”

By Ivan Damgård and Kasper Dupont, PKC 2005

Threshold Signatures, the setting

2

Adv

The servers
sk2sk1

sk3 sk4

Corrupt

Inputs,
Desired
outputs

For simplicity, will assume
static corruption: Adversary
corrupts initially.

Global public
signature key pk,
Shares ski of secret
key sk.

The Adversary
corrupts a
minority actively

The n servers receive from a
client a message m to sign. Adv
should learn only the signature

A weaker protocol as starting point

3

Adv

C

Passive and Fail-stop

Assume protocol is ”non-
interactive”: a client can
broadcast m to all servers,
and servers return
signature shares s1,..,sn

=> Client can now
compute the signature,
using a CombineShares
function.

s2
mThe adversary can learn a

minority of the ski’s and
all signature shares, and
can make corrupted
players crash, still learns
only signature

Notation

H a set of indices. sH = {si | i in H}.
Our assumption is that if we are given a set of correct signature
shares sH computed from message m, and |H| ≥ n/2, then

Ssk(m) = CombineShares(sH)

Many examples of this set-up: RSA, Schnorr, DSA, etc.

Specifically, for RSA, ”semihonest with crash” security can be achieved
with no special requirements on the modulus and no computational
assumptions other than RSA.

4

How to get malicious security?

The reflex reaction:
Servers should prove in ZK that their signature schares are correct.
This works because at least n/2 correct shares will survive, and all
incorrect shares are rejected.

However, main take-home message from this talk:
This is overkill!

5

An observation

The semi-honest/crash secure protocol is in some sense already
maliciously secure. The client can compute the signature as follows:

Given the set of all signature shares, for all subsets H with |H|=n/2,
Compute s= CombineShares(sH).
If Vpk(s,m)= accept, output s and stop.

This works because there is a set H with only honest players and
CombineShares is assumed to work for that set.
But of course it scales terribly..

6

Another observation

We could make the previous algorithm efficient, if we could get rid of
enough incorrect shares.

Say we could detect most of the incorrect shares and kick them out.
Such that we now have n’ shares left, and h of these are correct,
where n’ is only marginally larger than h.

Now, most of the subsets H we try in the algorithm will work, and we
will finish much faster.

7

More precisely

Say we have t corrupted signature shares and t+1 correct ones (worst
case, assuming honest majority).

Assume we have a test that accepts a correct share and rejects an
incorrect one, except with probability p. We run this test on all input
shares and then do the algorithm from before.

Lemma. Let c be any constant such that c>2. if p < 1/ct2, then the
expected number of subsets we have to try is O(1).

8

How to do the test

A simple way to implement the test we assumed is to do a ZK proof
with non-negligible soundness error p.

An Example: RSA.
Modulus n, share of secret key ski, for i=1..n.
Choose fixed element g of maximal order.
In key generation, compute hi= gski mod n.

Now, in the simplest case, we would do the standard Sigma protocol
with 1-bit challenge:

9

The Sigma protocol

10

Client chooses a 1-bit challenge b.

In the end, accepts or rejects. If si
incorrect, will accept with
probability at most ½, or Si could be
used to factor n.

Si C

Public: n, g and hi= gski mod n. Si knows secret key share ski.
Si computes signature share si= mski mod n

ai
b
zi

This works for any modulus, and requires no extra assumptions for soundness, unlike other
constructions.
Can repeat in parallel log(2t2) times to get soundness error as required in the lemma.
Can also get the same in 1 repetition and a log(2t2) –bit challenge under mild restrictons on n.
Caveat: cannot use Fiat-Shamir to make this non-interactive! However…

Optimistic Protocol to avoid interaction

1. C broadcasts m to servers.
2. Each Si sends si and ai (first message in proof). The randomness for this

generated by a PRF using a secret key and message m as input (plus
perhaps a session id).

3. C tries to compute signature from a t+1 subset. If this works, we are
done. Else C sends m, si, ai and a challenge b to the servers.

4. Each Si regenerates its randomness and checks C sent correct data. If so,
return the answer zi in the proof.

5. C can now filter out most bad signature shares and compute signature.

No interaction if servers behave or crash.
Servers need not keep state.

11

Generalizations

• Can potentially use this idea for any signature scheme because we
can verify the output (but the advantage is not always as great as
for RSA)

• Works also for RSA decryption, and potentially for any other scheme
where we can recognize the correct plaintext when we see it.

• Assume that the number t of servers that can be corrupted is very
small compared to the number n of servers – or is almost equal to
n. Then, there are not too many t+1 subsets. And the approach
works with no ZK at all.

• Notice:the secret sharing scheme in the original paper has a bug,
but this is orthogonal to what we discuss here.

12

13

Thanks!

