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Abstract

We study a relaxed notion of lattice trapdoor called approximate trapdoor, which is defined to
be able to invert Ajtai’s one-way function approximately instead of exactly. The primary moti-
vation of our study is to improve the efficiency of the cryptosystems built from lattice trapdoors,
including the hash-and-sign signatures.

Our main contribution is to construct an approximate trapdoor by modifying the gadget
trapdoor proposed by Micciancio and Peikert [Eurocrypt 2012]. In particular, we show how to
use the approximate gadget trapdoor to sample short preimages from a trapdoor-independent
distribution. The analysis of the distribution uses a theorem (implicitly used in past works)
regarding linear transformations of discrete Gaussians on lattices.

Our approximate gadget trapdoor can be used together with the existing optimization tech-
niques to improve the concrete performance of the hash-and-sign signature in the random oracle
model under (Ring-)LWE and (Ring-)SIS assumptions. Our implementation shows that the sizes
of the public-key & signature are about half of those in schemes built from exact trapdoors.

*Visa Research.
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1 Introduction

In the past two decades, lattice-based cryptography has emerged as one of the most active areas
of research. It has enabled both advanced cryptographic capabilities, such as fully homomor-
phic encryption [Gen(9]; and practical post-quantum secure public-key encryptions and signa-
tures, as observed in the ongoing NIST post-quantum cryptography (PQC) standardization pro-
cedure [AAAST19]. A large fraction of the lattice-based cryptosystems uses lattice trapdoors. Those
cryptosystems include basic primitives like public-key encryption and signature schemes [GGH97,
HPS98, HHP 03, GPV08], as well as advanced primitives such as identity-based encryption [GPV08,
ABB10, CHKP12], attribute-based encryption [GVW13], and graded encodings [GGH15].

In this work, we focus on the trapdoor for the lattice-based one-way function defined by Ajtai [Ajt96],
and its application in digital signatures [GPV08]. Given a wide, random matrix A, and a target
vector y. The inhomogeneous short integer solution (ISIS) problem asks to find a short vector x as a
preimage of y, i.e.

A -x=y (modygq).

Without the trapdoor, finding a short preimage is proven to be as hard as solving certain lattice
problems in the worst case [Ajt96]. A trapdoor for the matrix A, on the other hand, allows its
owner to efficiently produce a short preimage. An explicit construction of the trapdoor for Ajtai’s
function was first given in [Ajt99] and later simplified by [AP11, MP12].

Towards the proper use of lattice trapdoors in cryptography, what really gives the trapdoor a punch
is the work of Gentry, Peikert and Vaikuntanathan [GPV08]. They show how to sample a short
preimage from a trapdoor-independent distribution, instead of a distribution which may leak informa-
tion about the trapdoor (as observed by the attacks [GS02, NRO6] on the initial attempts of building
lattice-based signatures [GGH97, HHP*03]). The trapdoor-independent preimage sampling algo-
rithm allows [GPVO08] to securely build a hash-and-sign signature as follows. Let the matrix A be
the public verification key, the trapdoor of A be the secret signing key. To sign a message m, first
hash it to a vector y, then use the trapdoor to sample a short preimage x as the signature. The secret
signing key is guaranteed to be hidden from the signatures, since the signatures are produced from
a trapdoor-independent distribution.

Despite its elegant design, the hash-and-sign signature based on Ajtai’s function suffers from prac-
tical inefficiency due to its large key size and signature size. Indeed, all the three lattice-based sig-
nature candidates that enter the second round of NIST PQC standardization [AAAST19] are built
from two alternative approaches — Falcon [FHK 18] is based on the hash-and-sign paradigm over
NTRU lattices; Dilithium [DKL*18] and qTESLA [ABB*19] are based on the rejection sampling
approach [Lyul2, BG14]. The suggested parameters for the three candidates lead to competitive
performance measures. For example, for 128-bit security, the sizes of the public keys & signatures
for all the three candidates are below 5 kB & 4 kB (respectively). By contrast, for the hash-and-sign
signature based on Ajtai’s function, the sizes of the public keys & signatures are more than 35 kB &
25 kB according to the implementation benchmarks of [BB13, BFRS18, GPR*18].

1.1 Summary of our contributions

In this paper we define a relaxed notion of lattice trapdoor called approximate trapdoor, which can
be used to solve the ISIS problem approximately instead of exactly. The primary motivation is to
improve the efficiency of hash-and-sign signatures based on Ajtai’s one-way function. With a relax-
ation of the correctness requirement, it is possible to generate smaller public matrices, trapdoors,
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and preimages for Ajtai’s function, which translate to smaller public-keys, secret-keys, and signa-
tures for the hash-and-sign signature scheme.

Our main technical contribution is to show that the gadget trapdoor proposed by Micciancio and
Peikert [MP12] can be modified to an approximate trapdoor. In particular, we show how to use
the approximate gadget trapdoor to sample preimages from a trapdoor-independent distribution.
The analysis of the distribution uses a theorem (implicitly used in past works) regarding linear
transformations of discrete Gaussians on lattices.

Our approximate gadget trapdoor can be used together with all existing optimization techniques,
such as using the Hermite normal form and using a bigger base in the gadget, to improve the
concrete performance of the hash-and-sign signature in the random oracle model under RingLWE
and RingSIS assumptions. Our proof-of-concept implementation shows that the sizes of the public-
key & signature can be reduced to 5 kB & 4.45 kB for an estimation of 88-bit security, and 11.25 kB
& 9.38 kB for an estimation of 184-bit security. Those are much closer to the sizes of the signatures
based on the rejection sampling approach [Lyul2, BG14, DKL*18, ABB"19]. More details of the
comparisons are given in §1.3 and §5.2.

1.2 Technical overview

We now provide an overview of the problem setting and the techniques we use.

Given a public matrix A € Zy*™ where m = O(nlog q), and a target y. We call a vector x € Z™ an
approximate short preimage of y if
A -x=y+z (modyq)

for some z € Z", and both x and z are short. An approximate trapdoor for A is defined to be a string
that allows its owner to efficiently find an approximate short preimage given a target y.

Of course, to make sense of the word “trapdoor”, we first need to argue that solving the approxi-
mate version of ISIS is hard without the trapdoor. Under proper settings of parameters, we show
the approximate ISIS problem is as hard as the standard ISIS problem, or no easier than LWE. The
reductions extensively use the Hermite normal form (HNF) and are pretty straightforward.

The approximate ISIS problem and the approximate trapdoor are natural generalizations of their
exact variants. Indeed, both notions have been used in the literature, at least on an informal level.
For example, the approximate ISIS problem was used in the work of Bai et al. [BGLS19] to improve
the combinatorial algorithms of the exact ISIS problem.

For the approximate trapdoor, it is well-known that an exact trapdoor of a public matrix in the HNE,
say a trapdoor for A = [I,, | A’], can be used as an approximate trapdoor for A’. Such a method
was often used in the implementation of signatures to decrease the sizes of the public key and the
signature by a dimension of n. Our goal is thus to further reduce the sizes compared to the HNF
approach, while preserving the quality of the trapdoor, i.e. at least not increasing the norm of the
preimage.

Approximate gadget trapdoor.  Our main contribution is to show that the gadget trapdoor (G-
trapdoor) proposed by Micciancio and Peikert [MP12] can be modified to an approximate trapdoor,
in a way that further reduces the sizes of the public matrix, the trapdoor, and the preimage.

Recall the core of the G-trapdoor is a specific “gadget” matrix of base b,

G = In ® gt = In ® (]‘7ba 3bk_1) S ZnX(nk)7
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where k := [log;, ¢|. The base b is typically chosen to be 2 for simplicity, or a larger value in practical
implementations.

Micciancio and Peikert [MP12] show how to generate a random matrix A together with a matrix D
of small norm such that A - D = G (mod ¢). In particular, A is designed to be

A =[A|G — AR],
where R is a matrix with small entries and is the actual trapdoor. The matrix D is then equal to

[IR } . Since the kernel of the G matrix has a public short basis, one can first solve the ISIS problem
nk

under the public matrix G, then use D to solve the ISIS problem under the public matrix A.

We observe that if we drop a few (say /) entries corresponding to the small powers of b from the
gadget matrix G, i.e. let the following F matrix be a modified gadget matrix

F:=L of =L, &®#,.. k") ezl

then we are still able to solve the ISIS problem w.r.t. the public matrix F up to a b!-approximation
of the solution (i.e., the norm of the error vector is proportional to b'). Replacing G by F in A gives

A =[A[F — AR]. (1)

Then the dimensions of the trapdoor R and the public matrix A can be reduced.

Sampling from a trapdoor-independent distribution. Given a public matrix A together with its
approximate G-trapdoor R, finding an arbitrary approximate short preimage of a given target u is
quite straightforward, but sampling the preimage from a trapdoor-independent distribution turns
out to be non-trivial. As mentioned, the ability to sample from a trapdoor-independent distribution
is fundamental to most of the trapdoor applications including digital signatures.

We provide an algorithm that samples an approximate short preimage from a trapdoor-independent
distribution. The algorithm itself is a fairly simple generalization of the perturbation-based discrete
Gaussian sampler from [MP12], but the analyses of the preimage distribution from [MP12] are not
easy to generalize. Our analyses of the preimage distribution and the approximation error distri-
bution extensively use a linear transformation theorem on lattice distributions (cf. Lemma 2.8, or
Theorem 2.7, implicitly used in [MP12, MP13, BPMW16, DGPY19]).

The details of the analyses are quite technical. Here let us mention a qualitative difference of the
result we have proved compared to the ones from [GPV08, MP12]. While our algorithm works for
all the target image u € Z; and does not cause any blow up in the standard deviation of the distri-
bution, the analysis of trapdoor-independence only applies to a target image u sampled uniformly
from Zj, as oppose to the analysis for the exact trapdoor in [GPV08, MP12] which is able to spell
out the distribution of the preimages of all the u € Z;. Still, sampling the approximate preimages
for uniform targets from a trapdoor-independent distribution suffices for replacing the use of exact
lattice trapdoors in the digital signature scheme.

To briefly explain the reason behind the qualitative difference, we observe that the methods we have
tried to handle all the target images require significant increases in the smoothing parameters of the
lattice intersections required in the linear transformation theorem (Lemma 2.8, or Theorem 2.7). In
other words, the norm of the resulting preimage increases significantly rendering the result mean-
ingless.



Parameters Exact G-trapdoor Approximate G-trapdoor

m n(2+k) n(2+ (k—1))

o Vb2 +1-w(y/logn) Vb2 +1-w(y/logn)

s C-7-(Vm+2yn) o Ci’~7'-(\/m+2\/ﬁ)‘cr
v 0 b o

Figure 1: A brief comparison of the parameters. The parameters in the table are derived under a
fixed lattice dimension n, a fixed modulus ¢ > /n, and a fixed base b. Let k = [log; ¢q]. Let [ denote
the number of entries removed from g (1 < [ < k). Then we list m as the dimension of the public
matrix and the preimage; o as the width of the gadget preimage distribution; s as the width of the
final preimage distribution (where C' > 0 is a universal constant; 7 as the width, or subgaussian
parameter, of the distribution of the entries in the trapdoor); v as the length bound of the error for
each entry in the image.

1.3 Improvement in the efficiency compared to the exact trapdoor

We now explain the efficiency gain of using our approximate trapdoor compared to the exact trap-
door and the other existing optimization techniques, with a focus on the signature application. Our
goal is to set the parameters to achieve the following “win-win-win” scenario:

1. Save on the preimage size (bandwidth).
2. Save on the size for the public matrix A.

3. Retain, or even gain, concrete security, which is related to the discrete Gaussian width of the
preimage and the norm of the error term.

Let us start with an understanding of the dependency of the savings on the variable /, i.e, the num-
ber of entries dropped from the gadget g. In Figure 1 we provide a comparison of the parameters
between the exact G-trapdoor of MP12 and the approximate G-trapdoor samplers in this paper. In
both cases the public matrices are instantiated in the pseudorandom mode. For the approximate
trapdoor, the dimension of the trapdoor decreases from nk to n(k — [). The dimension m of the
public matrix and the preimage decreases. The width s of the preimage distribution also decreases
slightly following the descreasing of m. However, the norm of the error factor in the image grows
with [. So in the concrete instantiation of the hash-and-sign signature discussed later, we need to
coordinate the value of [ with the norms of the preimage and the error, which will determine the
security estimation together.

Our algorithm inherits the O(log ¢)-space, O(n log ¢)-time G-preimage sample subroutine from [MP12,
GM18]. So the saving of space and time in the sampling of the perturbation is proportional to the
saving in the dimension m.

Concrete parameters for the signatures. We give a proof-of-concept implementation of the hash-
and-sign signature based on our approximate trapdoor. The security is analyzed in the random
oracle model, assuming the hardness of RingLWE for the pseudorandomness of the public key and
RingSIS for the unforgeability of the signature. Here we provide a short summary and leave more
details in Section 5.2.



Params | Exact Approx  Approx Exact Approx Approx | Exact Approx  Approx
n 512 512 512 512 512 512 512 512 512
[log, q] | 24 24 24 16 16 16 16 16 16

b 2 2 2 2 2 2 4 4 4

l 0 12 15 0 7 9 0 2 4

T 40 40 40 2.6 2.6 2.6 2.6 2.6 2.6

s 38317.0 29615.3 26726.3 2170.7 1756.3 1618.2 3114.2 2833.3 2505.6
m 13312 7168 5632 9216 5632 4608 5120 4096 3072
[Ix]|2 4441737.7 2521387.0 2035008.5 | 211100.9 133305.5 109339.1 | 223740.1 183004.9 138145.7
l|z]|2 0 374014.0  2118987.6 | 0 118979 464284 |0 1402.3 19807.1
PK 37.50 19.50 15.00 17.00 10.00 8.00 9.00 7.00 5.00
Sig 25.68 13.53 10.51 13.16 7.83 6.30 7.62 594 4.45
LWE 100.0 100.0 100.0 104.7 104.7 104.7 104.7 104.7 104.7
AISIS | 80.2 85.8 81.1 83.7 89.0 88.1 82.8 85.5 87.8

Figure 2: Summary of the concrete parameters. The size of PK and Sig are measured in kB. ||x||2,
||z||2 are the upper-bounds of the norms of the preimage and the error term. LWE and AISIS re-
fer to the estimations of security levels for the pseudorandomness of the PK and finding a short
approximate preimage.

Let us first remark that different implementation results of the hash-and-sign signatures [BB13,
BFRS18, GPR"18] possibly use different ways of measuring sizes and security, and not all the details
are recoverable from the papers. So we also include our reference implementation of the exact
trapdoor as a fair comparison. For an estimation of 88-bit security, our reference implementation
for the exact trapdoor under the modulus ¢ ~ 224 and base b = 2 matches the parameters reported
in [BB13].

We also use smaller moduli and bigger bases to reduce the size and increase the security level.
The parameters in Figure 2 suggest that for the 3 choices of ¢ and b, using the approximate gadget
trapdoor by setting [ = [(log, ¢)/2] saves about half of the sizes in the public key and signatures
comparing to using the exact trapdoor, with even a slight increase in the security estimation.

Our implementation shows that the sizes of the public-key & signature can be reduced to 5 kB
& 4.45 kB for an estimation of 88-bit security, and 11.25 kB & 9.38 kB for an estimation of 184-bit
security. Those are much closer to the sizes of the signatures based on the rejection sampling ap-
proach [Lyul2, BG14, DKL*18, ABB*19]. As a reference, the sizes of the public-key & signature for
qTESLA [ABB*19] are 4.03 kB & 3.05 kB for an estimation of 128-bit security, and 8.03 kB & 6.03 kB
for an estimation of 192-bit security. The sizes for Dilithium [DKL"18] are even smaller. Let us re-
mark that our implementation has not used many low-level optimizations like Dilithium [DKL*18]
and qTESLA [ABB"19]. So it is reasonable to expect we have more room to improve after adding
lower-level optimizations. The parameters for Falcon [FHK"18] are the smallest due to the use of
NTRU lattices, so they are rather incomparable with the ones based on RingLWE. As a side note,
we do not know how to construct approximate trapdoors for NTRU lattices, and we leave it as an
interesting question to investigate in future.

Remarks on the comparison and compatibility with other possible optimizations.  There are
many folklore optimizations regarding trapdoors for Ajtai’s one-way function. We discuss the com-
parison and compatibility of a few of them with our construction. Throughout these comparisons
we are concerned with the “win-win-win” scenario mentioned in the beginning.

First is the approximate trapdoor from the HNF optimization: A = [I|A’]. This barely achieves the
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“win-win-win” scenario with a slight savings on the public key and the signature. Our construction
can be used in the pseudorandom-mode of the gadget trapdoor which has automatically included
the HNF optimization, and saves around 50% in addition.

Our method can also be used together with any base in the gadget, including a large base of size
b ~ ,/q (the resulting gadget is g = [1,,/q]), as was used in [dPLS18] when the modulus is large.
This construction suffers from a large Gaussian width (,/g), which hurts concrete security and is
infeasible in the smaller modulus regime we implement in Section 5. Specifically for the smaller
moduli, the signature’s Gaussian width is larger than the modulus, as was confirmed both on paper
and in our experiments. So we use a moderately large base b.

One may also try to construct a short integer matrix S for A := [(I, A/)|F — (I, A’)R] (corresponds to
the pseudorandom public key in Eqn. (1)) such that AS = G, and hope this view provides a better
approximate trapdoor. From here, the hash and sign signature scheme is to return Sz + p where p
is a perturbation and z is a G-lattice sample. However, such a matrix S requires a b' term. So this
method does save on the public key, but does not improve the signature size and, most importantly,
increases the Gaussian width by a factor of 4. The increase of the width decreases the concrete
security of the underlying SIS problem. In fact, to achieve the same saving in the public key, one
can instead directly increase the base from b to b' in the gadget.

Using approximate trapdoors in the advanced lattice cryptosystems.  Finally, let us briefly
mention the possible applications of the approximate trapdoors in the cryptosystems built from
the dual-Regev approach [GPV08, ABB10, CHKP12, GVW13] and the GGH15 approach [GGH15,
BVWW16, CC17, GKW17, WZ17, CVW18].

To use approximate trapdoors in the schemes based on the dual-Regev approach, we need to sample
the LWE secret term with a small norm instead of from the uniform distribution to maintain the
correctness of the schemes. The security of these schemes requires the corresponding extension of
the Bonsai techniques in the approximate setting. We leave the details of the extension to future
works.

For the schemes based on the GGH15-approach, the correctness of the schemes holds without any
changes. The security also holds, except for the schemes in [CVW18] which requires the exten-
sion of the Bonsai techniques. Let us remark that the saving in the dimension m is of signifi-
cant importance to the applications built on the GGH15 graded encoding scheme (implemented
in [HHSS17, CGM*18]). In those applications, the modulus ¢ is proportional to m? (where d € N
is the number of “levels” of the graded encodings; larger d supports richer functionalities). So
reducing the dimension m would dramatically reduce the overall parameter.

2 Preliminaries

Notations and terminology. In cryptography, the security parameter (denoted as ) is a variable
that is used to parameterize the computational complexity of the cryptographic algorithm or pro-
tocol, and the adversary’s probability of breaking security. An algorithm is “efficient” if it runs in
(probabilistic) polynomial time over A.

When a variable v is drawn uniformly random from the set S we denote as v < U(S). We use ~;
and ~,. as the abbreviations for statistically close and computationally indistinguishable. For two



distributions D1, D over the same support X', we denote D ~ D5 to denote that each x € X has
Dy(z) € [1 £€]Dso(x) and Dy(z) € [1 £]Dy(x).

Let R, Z, N be the set of real numbers, integers and positive integers. Denote Z/qZ by Z,. For n € N,
[n] := {1,...,n}. A vector in R" (represented in column form by default) is written as a bold lower-
case letter, e.g. v. For a vector v, the i’ component of v will be denoted by v;. For an integer base
b > 1, we call a positive integer’s “b-ary” decomposition the vector (qo, g1, - - -, qx—1) € {0,...,b—1}F
where k := [log; q], and ¢ = > ¢;b".

A matrix is written as a bold capital letter, e.g. A. The it column vector of A is denoted a;. The
length of a vector is the £,-norm ||v||, := (3" v!)!/P, or the infinity norm given by its largest entry
|V]loo := max;{|v;|}. The length of a matrix is the norm of its longest column: [|A||, := max; ||a;[,.
By default we use /2-norm unless explicitly mentioned. When a vector or matrix is called “small”
or “short”, we refer to its norm but not its dimension, unless explicitly mentioned. The thresholds
of “small” or “short” will be precisely parameterized in the article when necessary.

2.1 Linear Algebra

Let {e;}" ; be the canonical basis for R", with entries 6(j, k) where 6(j, k) = 1 when j = k and 0 oth-
erwise. For any set S C R", its span (denoted as span(.9)) is the smallest subspace of R" containing
S. For a matrix, M € R"*"™, its span is the span of its column vectors, written as span(IM). We write
matrix transpose as M‘. Let B denote the Gram-Schmidt orthogonalization of B. The GSO of an
ordered basis B = [by, ..., by] is assumed to be from left to right, b; = by, unless stated otherwise.

Recall M’s singular value decomposition (SVD), i.,e. M = VDW € R"™" where V € R"*" along
with W € R™*™ are unitary, and D € R"*™ is a triangular matrix containing M’s singular values.

Further, let ¢ = min{n, m} and D, = diag(s1, ..., s¢) be the diagonal matrix containing M'’s singular
values {s; > ... > s, > 0}. Then, D = D, whenn =m, D = [D, 0] whenm > n,and D = []?]q] in

the case m < n.

A symmetric matrix X € R™*™ is positive semi-definite if for all x € R", we have x'¥x > 0. It is positive
definite, ¥ > 0, if it is positive semi-definite and x'>x = 0 implies x = 0. We say ¥ > ¥y (>) if
Y1 — Xy is positive-(semi)definite. This forms a partial ordering on the set of positive semi-definite
matrices, and we denote ¥ > al often as & > « for constants a € R™. For any positive semi-definite
matrix X, we write v/ to be any full rank matrix T such that ¥ = TT*. We say T is a square root of
Y. For two positive semi-definite matrices, ¥; and X», we denote the positive semi-definite matrix
formed by their block diagonal concatenation as ¥ @ 3. Let M* denote Hermitian transpose. The
(Moore-Pentrose) pseudoinverse for matrix M with SVD M = VDW is MT = WD*V* where D"
is given by transposing D and inverting M’s nonzero singular values. For example, T = sI and
T+ = s7!I for a covariance © = s?I. (An analogous T™ = T~! is given for the non-spherical,
full-rank case ¥ > 0 using ¥’s diagonalization.)

2.2 Lattices background

An n-dimensional lattice A of rank k < n is a discrete additive subgroup of R". Given k linearly
independent basis vectors B = {by, ..., by € R"}, the lattice generated by B is

k
A(B) = A(by,....bg) ={D ;- b, z; € Z}.
=1
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Given n,m € N and a modulus g > 2, we often use g-ary lattices and their cosets, denoted as
for A € Z;*™, denote AL(A) or AqL(A) as{x€Z™:A-x=0 (modq)};

nxm n L m . —
for A € Zy*™,w € Zy/, denote Aj(A)as{x€cZ":A-x=w (modq)}.

Gaussians on lattices. For any s > 0 define the Gaussian function on R" with parameter s:
Vx € R", ps(x) = e TIxIP/s,

For any ¢ € R", real s > 0, and n-dimensional lattice A, define the discrete Gaussian distribution
Dpe,s as:

ps (%)
ps(A+c)

The subscripts s and c are taken to be 1 and 0 (respectively) when omitted.

Vx € A+ ¢, Dpjes(x) =

For any positive semidefinite 3 = T - T?, define the non-spherical Gaussian function as

—mxtTtx

vx € span(T) = span(X), pr(x) =€ ,
and pr(x) = 0 for all x ¢ span(X). Note that pr(-) only depends on X but not the specific choice of
the T, so we may write pr(-) as p 5 (-).

For any c € R”, any positive semidefinite ¥, and n-dimensional lattice A such that (A +c)Nspan(X)
is non-empty, define the discrete Gaussian distribution D, | . as:

IV (x)
VxeA+c, D (%) = —F—F——.
X c A+c, E(X) P E<A+C>
Smoothing parameter. We recall the definition of smoothing parameter and some useful facts.

Definition 2.1 (Smoothing parameter [MRO7]). For any lattice A and positive real e > 0, the smoothing
parameter n(A) is the smallest real s > 0 such that p;s(A* \ {0}) < e.

Notice that for two lattices of the same rank A; C A,, the denser lattice always has the smaller
smoothing parameter, i.e. n¢(A2) < ne(Aq).

We will need a generalization of the smoothing parameter to the non-spherical Gaussian.

Definition 2.2. For a positive semi-definite > = TT?, an € > 0, and a lattice A with span(A) C span(3),
we say n.(A) < VY ifn(TTA) < 1.

When the covariance matrix ¥ > 0 and the lattice A are full-rank, v > ne(A) is equivalent to the
minimum eigenvalue of ¥, Ay,in (X), being at least n2(A).

Lemma 2.3 (Smoothing parameter bound from [GPVO08]). For any n-dimensional lattice A(B) and for
any w(v/logn) function, there is a negligible e(n) for which

ne(A) < B - w(v/logn)



Lemma 2.4 ([MRO7]). Let A be a lattice, ¢ € span(A). For any ¥ > 0, if VX > nc(A) for some € > 0, then
1—ce¢
pys(A+c)e e 1 pys(A)

The following is a generalization of [GPV08, Corollary 2.8] for non-spherical Gaussian.

Corollary 2.5 (Smooth over the cosets). Let A, A’ be n-dimensional lattices s.t. A’ C A. Then for any
€>0,VE>n(N) and c € span(A), we have

A(Dy, o 5 mod A, U(A mod A')) < 2¢

A+c
Lemma 2.6 ([PR06, MRO7]). Let B be a basis of an n-dimensional lattice A, and let s > |B|| - w(logn),
then Pry, p, [|IX]| = s - v/nV x = 0] < negl(n).

Linear Transformations of Discrete Gaussians. We will use the following general theorem, im-
plicitly used in [MP12, MP13, BPMW16], regarding the linear transformation, T, of a discrete Gaus-
sian. It states that as long as the original discrete Gaussian is smooth enough in the kernel of T,
then the distribution transformed by T is statistically close to another discrete Gaussian.

Theorem 2.7 ([Mic]). For any positive definite 3, vector c, lattice coset A :== A + a C ¢ + span(X), and
linear transformation T, if the lattice Ay = A N ker(T) satisfies span(At) = ker(T) and ne(At) < VI,
then _

T(DA,C,\/E) X Dpygrervs
where € = 2¢/(1 — ¢).

We remark that if T is injective (i.e. ker(T) is trivial), then T(D, ;. /5) = Dy e 15

Let us also remark that at the time of writing this article, the following lemma (which is a special
case of Theorem 2.7) has already been proven in [DGPY19]. This lemma is suitable for all of our
proofs using a non-injective linear transformation of a discrete gaussian.

In what follows, the max-log distance between two distributions with the same support Sis Ay (X,)) =
maxgses |log X(s) — log Y(s)| [MW18].

Lemma 2.8 (Lemma 3, [DGPY19]). Let T € Z™"*" such that TZ™ = Z" and A*(T) = {x € Z™ : Tx =
0 € Z"}. Let ¥ = TT!. Fore € (0,1/2), ¢ = ¢ + O(¢?), > ne(A+(T)), the max-log distance between
T - Dzm . and D, E is at most 4é.

2.3 Gadgets, or G-Lattices

Let G = I, ® g' € Z*"% with g" = (1,b,...,b0F71), k = [log, q]. G is commonly referred to the
1

gadget matrix. The gadget matrix’s g-ary lattice, A,

AqL(gt). Further, AqL(gt) has a simple basis,

(G), is the direct sum of n copies of the lattice

b qr_2
-1 qr



where (qo, ..., qx—1) € {0,1,...,b—1}Fis the b-ary decomposition of the modulus, g. When ¢ = bk,
we cheat by having ¢y = ¢1 = ... = gx—2 = 0 and ¢;_; = b. Either way, the integer cosets of AqL(gt)
can be viewed as the syndromes of g’ as a check matrix, in the terminology of coding theory. These
cosets are expressed as A (g!) = {x € Z¥ : glx = u mod ¢} = AqL(gt) + u where u can be any coset
representative. A simple coset representative of A (gt) is the b-ary decomposition of u. The integer
cosets of AqL (G) are expressed through the direct-sum construction, A (G) = AL (g")&...@AL (g))
where u = (u1, ..., u,) € Zy. We call G a gadget matrix since the following problems, SIS and LWE,
are easily solved on the matrix G [MP12].

2.4 SIS, LWE, and the trapdoor

We first recall the short integer solution (SIS) problem.

Definition 2.9 (SIS [Ajt96]). For any n,m,q € Z and 3 € R, define the short integer solution problem
SISy,m.q,5 as follows: Given A € Zy*™, find a non-zero vector x € Z™ such that ||x|| < 3, and

Ax =0 mod gq.

Definition 2.10 (ISIS). For any n,m,q € Z and 3 € R, define the inhomogeneous short integer solution
problem 1S1S,, ,,, 4 s as follows: Given A € Zy*™,y € Zg, find x € Z™ such that ||x|| < 3, and

Ax =y modgq.

Lemma 2.11 (Hardness of (I)SIS based on the lattice problems in the worst case [Ajt96, MR07,
GPV08]). For any m = poly(n), any 5 > 0, and any sufficiently large ¢ > 3 - poly(n), solving SIS, 4.3
o1 ISISy, 1,5 (where y is sampled uniformly from Zg;) with non-negligible probability is as hard as solving
GapSVP,, and SIVP,, on arbitrary n-dimensional lattices with overwhelming probability, for some approxi-
mation factor v = 3 - poly(n).

All the (I)SIS problems and their variants admit the Hermite normal form (HNF), where the public
matrix A is of the form [I,, | A’] where A’ € ng(m_n). The HNF variant of (I)SIS is as hard as the
standard (I)SIS. This can be seen by rewriting A € Zy*™ as A =: [A1 | Ag] = Ay - [I,, | ATl AY)
(we always work with n, g such that A; < U(Z;*") is invertible with non-negligible probability).

Learning with errors. We recall the decisional learning with errors (LWE) problem.

Definition 2.12 (Decisional learning with errors [Reg09]). For n,m € N and modulus q > 2, distribu-
tions for secret vectors, public matrices, and error vectors 6,7, x C Zq. An LWE sample is obtained from
sampling s < 0", A < 7", e < X", and outputting (A,y" :=s'A + e’ mod q).

We say that an algorithm solves L\WE,, 1, 4 0.x v If it distinguishes the LWE sample from a random sample
distributed as 7™ x U(Zy") with probability greater than 1/2 plus non-negligible.

Lemma 2.13 (Hardness of LWE based on the lattice problems in the worst case [Reg09, Pei(9,
BLP*+13, PRS17]). Given n € N, for any m = poly(n), ¢ < 2°P°Y("). Let § = = = U(Z,), x = Dz, where
s > 2y/n. If there exists an efficient (possibly quantum) algorithm that breaks L\WE,, ,,, 4 0., then there
exists an efficient (possibly quantum) algorithm for solving GapSVP. and SIVP., on arbitrary n-dimensional
lattices with overwhelming probability, for some approximation factor v = O(ngq/s).
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The next lemma shows that LWE with the secret sampled from the error distribution is as hard as
the standard LWE.

Lemma 2.14 ([ACPS09, BLP"13]). For n,m, q, s chosen as was in Lemma 2.13, LWE,, 1 .q,D5..,U(Z4),Dz.
is as hard as \WE,, .,  1(2,),U(2,),D., for m" < m — (16n + 4loglog q).

Trapdoor. A trapdoor for a public matrix A € Z;y*™ is a string that allows its owner to efficiently
solve both the (I)SIS and LWE problems w.r.t. A.

3 The Approximate Trapdoor for Ajtai’s Function

Given a matrix A € Zg*™, define an approximate trapdoor of A as anything that allows us to effi-
ciently solve the approximate version of the ISIS problem w.r.t. A. We first define the approximate
ISIS problem.

Definition 3.1 (Approximate ISIS). For any n,m,q € Nand «, 8 € R, define the approximate inhomo-
geneous short integer solution problem Approx.ISIS,, ;. 4.« g as follows: Given A € Zy*™,y € Zy, find a
vector x € Z™ such that ||x|| < B, and there is a vector z € Z" satisfying

|lz]| <a and Ax=y+2z (mod q).

Let us remark that the approximate ISIS is only non-trivial when the bounds «, 5 are relatively
small compared to the modulus g. Also, our definition chooses to allow the zero vector to be a valid
solution, which means when ||y|| < «, the zero vector is trivially a solution. Such a choice in the
definition does not cause a problem in the application, since the interesting case in the application
is to handle all the y € Z{/, or y sampled uniformly random from Zj.

Definition 3.2 (Approximate trapdoor). A string 7 is called an («, §)-approximate trapdoor for a matrix
A € Zy*™ if there is a probabilistic polynomial time algorithm (in n, m, log q) that given 7, A and any
y € Z7, outputs a non-zero vector x € Z™ such that ||x|| < /3, and there is a vector z € Z" satisfying

lz|| <a and Ax=y+z (modq).

3.1 Hardness of the approximate ISIS problem

To make sense of the approximate trapdoor, we argue that for those who do not have the trapdoor,
the approximate ISIS problem is a candidate one-way function under proper settings of parameters.

First, we observe a rather obvious reduction that bases the hardness of solving approximate ISIS
(given an arbitrary target) on the hardness of decisional LWE with low-norm secret (e.g. when the
secret is sampled from the error distribution). In the theorem statement below, when the norm
symbol is applied on a distribution D, i.e. ||D||, it denotes the lowest value v € R such that
Procp[|ld|| < v] > 1 — negl(A).

Theorem 3.3. For n,m,q € Z, a, 3 € RT, 0, x be distributions over Z such that ¢ > 4(||0|| - (o + 1) +
107 - -/ |[X™| - B /m). Then LWE,, 11,4.6,0(Zq)x <p APProx.ISIS;, i g.a.5-
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Proof. Suppose there is a polynomial time adversary A that breaks Approx.ISIS,, ;,, 4..3, We build a
polynomial time adversary B that breaks decisional LWE.

Letr = |a] + 1. Given an LWE challenge (A, w) € Zy*™ x Z;', where w is either an LWE sample
or sampled uniformly from Zj'. B picks a vector y := (r,0, ..., 0)" e Zy, sends A and y to the
adversary A as an approximate ISIS challenge. A replies with x € Z™ such that ||x|| < 3, and there
is a vector z € Z" satisfying

Izl <o and Ax=y+z (modq).

Note that x # 0 since ||y| > .

B then computes v := (w, x). If w! = s'A + €' for s + 6", e + x™, then
v=(s"A+e)x=s'(y+z)+e'x = v <07+ 0" o VtX B Vim < q/4.

Otherwise v distributes uniformly random over Z,. So B can compare v with the threshold value
and wins the decisional LWE challenge with probability 1/2 plus non-negligible. O

Alternatively, we can also prove that the approximate ISIS problem is as hard as the standard ISIS.
The reductions go through the HNFs of the ISIS and the approximate ISIS problems. All the reduc-
tions in the following theorem works for uniformly random target vectors.

Theorem 3.4. ISIS,, ;114,38 =p APProx.ISIS, 1 g.a+8.8: 1SISn ntm.qa+8 <p ApProx.ISIS, 1 4.q.5-

Proof. We will show ISIS = HNF.ISIS = HNF.Approx.ISIS = Approx.ISIS under proper settings of
parameters.

Recall that ISIS,, ,, , 3 = HNF.ISIS,, ,,, , 3 as explained in the preliminary. Also, HNF.ISIS,, ;,, 0 3 >p
HNF.Approx.ISIS,, 1, 4.5 for any o > 0 by definition. It remains to show the rest of the connections.

Lemma 3.5. HNF.ISIS,, ;, 4 a+8 <p HNF.Approx.ISIS,, 1, 4.5
Proof. Suppose there is a polynomial time algorithm A that solves HNF.Approx.ISIS,, ,, 4.«,3, we build

a polynomial time algorithm B that solves HNF.ISIS,, ,,, ; o+ 3. Given an HNF.ISIS instance [I,, | A] €
ngm, y, B passes the same instance to A, gets back a vector x such that

I,|A] - x=y+z (modq).
where ||x|| < 3, ||z]| < a. Now write x =: [x} | x}]¢ where x; € Z", x3 € Z™. Then x' := [(x1 — z) |
xb]! satisfies
L [A]-x"=y (mod g),
and ||x|| < a+ . So x' is a valid solution to HNF.ISIS. O

Lemma 3.6. HNF.Approx.ISIS,, ;,+1m.q.0.8 <p Approx.ISIS, 1, 4 o8-

Proof. Suppose there is a polynomial time algorithm A that solves Approx.ISIS,, ,, 4.«,3, We build a

polynomial time algorithm B that solves HNF.Approx.ISIS,, ;4 m.g.a.5- Given (I, | A] € ng(n—i-m),
y € Zg asan HNF.Approx.ISIS instance, B passes A € ngm, y to A, gets back a short vector x € Z™.
Then [0}, | x']* is a valid solution to the HNF.Approx.ISIS instance. O

Lemma 3.7. HNF.Approx.ISIS;, 5, 4m.q.0.8 =p APProx.ISIS,, 1 ¢.0+3,8-
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Proof. Suppose there is a polynomial time algorithm A that solves HNF.Approx.ISIS;, 1, 4m q.a,3, We
build a polynomial time algorithm B that solves Approx.ISIS,, ;, 4.a+3,3- Given an Approx.ISIS in-

stance A € Z;*™,y € 2", B passes I, | Al € ZZX("er), y as an HNF.Approx.ISIS instance to A, gets
back an answer x € Z™ " such that

I,|A]l-x=y+2z (modq), ()
where ||x|| < 5, ||z]| < a.
Now write x =: [x} | x4]" where x1 € Z", x5 € Z™. Rewriting Eqn. (2) gives

Axg=y+z—x (modg),
so x3 is a valid solution to Approx.ISIS,, ;1 4.0+3,3- O

Theorem 3.4 then follows the lemmas above. O

The following statement immediately follows the proof of Lemma 3.7.

Corollary 3.8. An («, 3)-approximate trapdoor for [I | A]is an (o + 3, B)-approximate trapdoor for A.

4 Approximate Gadget Trapdoor

We present an instantiation of an approximate trapdoor based on the gadget-based trapdoor gen-
eration and preimage sampling algorithms of Micciancio and Peikert [MP12] (without the tag ma-
trices). In short, we show how to generate a pseudorandom A with entries modulo ¢ along with an
approximate trapdoor R with small integer entries.

In the rest of this section, we first recall the exact G-trapdoor from [MP12], then present the approxi-
mate trapdoor generation algorithm and the approximate preimage sampling algorithm. Finally we
analyze the preimage distribution. The analyses make extensive use of Lemma 2.8, or Theorem 2.7
(linear transformations of discrete Gaussians).

4.1 Recall the G-trapdoor from MP12

Let b > 2 be the base for the G-lattice. Let ¢ be the modulus, k£ = [log; ¢]. b is typically chosen to be
2 for simplicity, but often a higher base b is used for efficiency trade-offs in lattice-based schemes.

Recall the gadget-lattice trapdoor technique from [MP12]: the public matrix is
A =[A|G - AR]

where G is the commonly used gadget matrix, G :=1, ® gtk, gi = (1,b,..., bk_l), and R is a secret,
trapdoor matrix with small, random entries. A is either statistically close to uniformly random or
pseudorandom, depending on the structure of A and the choice of x (in the pseudorandom case
X C Zis chosen to be a distribution such that LWE,, ,, , \ 17(z,),, is hard). In this paper we focus on
the pseudorandom case since the resulting public matrix A and preimage have smaller dimensions.
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In order to sample a short element in A (A), we use the trapdoor to map short coset representatives
of A;(G) to short coset representatives of A;-(A) by the relation
R
A =G.
il-e
Using the trapdoor as a linear transformation alone leaks information about the trapdoor. Therefore,
we perturb the sample to statistically hide the trapdoor. Let 3, be a positive definite matrix defined
RR' R!
asE,,:szI—oz[R .
offline as p « DZm’ N We then sample a G-lattice vector in a coset dependent on p as z «+

Dyi(g),- and v =u — Ap € Zg. Finally, the preimage is set to be

] where o is at least nE(A(ZL(G)). The perturbation can be computed

pyp— _'_ R
y:=DpD Il%

4.2 The algorithms of the approximate G-trapdoor

As mentioned in the introduction, the main idea of obtaining an approximate trapdoor is to adapt
the MP12 algorithms with a gadget matrix without the lower-order entries. Let 0 < [ < k be
the number of lower-order entries dropped from the gadget vector g € Z’qc . Define the resulting
approximate gadget vector as f := (b, b!F1 .. pF 1) € Z((]k_l). Let w = n(k — l) be the number of
columns of the approximate gadget F := I, ® f* € Z"**. Then the number of columns of A will be
m = 2n + w.

Once we replace the gadget matrix G with its truncated version, F, our approximate trapdoor
generation and approximate preimage sampling algorithms match the original gadget-based algo-
rithms. The generation and preimage algorithms are given as Algorithms 2 and 3, respectively.
Algorithm 1 represents our approximate F-sampling algorithm. It simply runs the G-lattice preim-
age sampling algorithm and drops the first [ entries from the preimage. The covariance of the
perturbation in Algorithm 3 is chosen as
t
Yp = 821m — o [R;t{ II{]

The results of this section are summarized in the following theorem.

Theorem 4.1. There exists probabilistic, polynomial time algorithms APPROX.TRAPGEN(-) and
APPROX.SAMPLEPRE(-, -, -, -) satisfying the following.

1. APPROX.TRAPGEN(n) takes as input a security parameter n and returns a matrix-approximate trap-
door pair (A, R) € Zn*m x z2m>ntk=D),

2. Let A be generated with an approximate trapdoor as above and let APPROX.A ™ (-) denote the approx-
imate preimage sampling algorithm, APPROX.SAMPLEPRE(A, R, s,-). The following two distribu-
tions are statistically indistinguishable:

{(A,y,ue): u+U(Zy), y+ APPROX.A"!(u), e=u— Ay mod ¢}
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Algorithm 1: GSAMP.CUT(v, o)
Input: v € Zy, 0 € RT
Output: z € ZF~!
1 Sample x € Z* from Dptgt),o
2 Let z be the last k — [ entries of x
3 return z.

Algorithm 3: APPROX.SAMPLEPRE(A, R, u, s).

Algorithm 2: APPROX.TRAPGEN(A)y, Input: (A, R, u,5) as in Theorem 4.1,

Input: Securit'y paramejcer A ) Output: An approximate preimage of u for
Output: matrix-approximate trapdoor pair AyecZm

(A,R).
1 Sample a uniformly random
A — U@zpm).
2 Let A := [I,,, A].
3 Sample the approximate trapdoor

1 Sample a perturbation p < D, N
2 Formv =u— Ap € Z.
3 Sample the approximate gadget
preimage z € Z"*~) as
z < GSAMP.CUT(v, o).

R «— X2n><w. R
4+ FormA :=[A|[F—AR|€Z ™ return 4  Formy:=p+ [I] z € 7™,
(A,R).

5 returny.

Figure 3: Pseudocode for the approximate trapdoor sampling algorithm in Subsection 4.3. We
abuse notation and let GSAMP.CUT(v, o) denote n independent calls to Algorithm 1 on each entries
of v € Ly, and then concatenate the output vectors. The distribution xy C Z is chosen so that

LWEn7n7Q7X7U(ZQ)7X is hard'

and

{(A7y7uve) 3Y<_DZ”L,sae<—DZnU mod q,u:Ay+e mod q}

B 1)/~ 1)

forany o > Vb +1-w(y/logn) and s > \/023%(R) + w(y/Togn). Furthermore, in the second
distribution, A is computationally indistinguishable from random assuming L\WE,, ,, . + v(z.).v-
1445 X5 ( [I)7X

Let us remark that the preimage sampling algorithm works for any target u € Zj, but we are only
able to prove the approximate preimage sample-coset pair (y, u) hides the approximate trapdoor,
R, over a uniform target u € Zjy. This is unlike the exact gadget-based trapdoor setting in [MP12]
which proves the trapdoor is hidden for each fixed u. In the overview of the proof idea, we will
briefly explain where the proof breaks down when we try to spell out the preimage distributions of
every u € Zg.

4.3 Analyze the preimage and error distributions for a uniformly random target

This subsection is dedicated to proving Theorem 4.1. For the convenience of explanation, in this
subsection we redefine the gadget G by permuting the columns so that the columns of smaller
entries are all on the left, i.e.

G := [MF] := [, @ (1,b,...,b' )|F)
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Let x = (x1,%x2) € Z™ x Z"*~1) denote the short preimage of v := u — Ap (mod ¢) under the

full gadget matrix G, i.e. Gx = v (mod ¢). The main idea of the proof is to first show that the

joint distribution of (p, x) produced in Algorithm 3 is statistically close to D LAGL /50 for any
u ) ’ P o

u € Zy (this is a stronger theorem than what we need). And then apply the linear transformation
theorem on (p, x) to obtain the distributions of the preimage y and the error term e.

However, applying the linear transformation theorem directly on the lattice coset A;[A, G| leads
to a technical problem. That is, the intermediate lattice intersections At required in Lemma 2.8 or
Theorem 2.7 have large smoothing parameters, which means even if we go through that route, the
Gaussian width of the resulting preimage would blow up significantly.

To get around this problem, we work only with a uniformly random target u instead of an arbitrary
target. In this case we prove that (p, x) is statistically close to D, SN Now the support

of (p,x) is the integer lattice Z™*"*. Working with the integer lattice is important for two reasons.
First, it allows us to treat x; and x as statistically independent samples; and second, it gives us
short vectors in the kernels summoned when using Lemma 2.8 or Theorem 2.7. From here we are
able to prove the final distributions of y and e are trapdoor-independent.

Formally, let ¢ = negl(\) > 0. We first prove three lemmas.

Lemma 4.2. For any o > n.(A+(G)), the random process of first choosing v < U(Z2) then returning
x < Dy (q),o is statistically close to sampling x < Dy .

Proof. The proof follows directly from det(A; (G)) = ¢" and Corollary 2.5. Alternatively, one can
use two applications of the fact p,(I' + ¢) € (1 £¢)o™/det(I") for any r > n.(I'). The latter yields

Pr{Process returns x} € G—jrg, %z) * Dgnk 5(X). O

Lemma 4.3. The following random processes are statistically close for any o > Vb?> +1 - w(y/logn) >

ne(gh): sample x; + Dy, and return e = [1,b, . .. b )xq; or, return e Dz,a D)D)

Proof. We use Lemma 2.8 or Theorem 2.7 where [1,b, ... ,b'=1] is the linear transformation. Notice
that the kernel of [1,b, ..., 5" "] is the linear span of [by,...,b;_;] where

by = (b,—1,0,...,0),by = (0,b,—1,0,...,0),...,bj_1 = (0,...,0,b,—-1) € Z.

The support of x;, Z', contains the (I — 1)-dimensional lattice, T' = Z' N Ker([1,b,...,b'1]), spanned

by [bi,...,b;_1]. Further, ¢ > n.(g") implies o is larger than the smoothing parameter of I" since
|bill < Vb?>+1fori = 1,...,1 — 1. Finally by routine calculation on the Gaussian width (and
support), we have e = [1,b,...,b" " 1x; ~ D, . [T w T O

LetR' := [ } . Next, we analyze the distribution given by the linear transformation represent-

L—1)
ing the convolution step:

X2

y =p +R'xy = [I,|R’] <p>
for (p,x2) + DZmMU@,”’ NS B Let L := [I,,|R’] in Lemma 4.4 and its proof below.

Lemma 4.4. For any \/fp > ng(Z”(k_Z)), and o > nE(Z”(k_l)), LDZern(k*l),\/m is statistically
close to Dzm .
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Proof. The range and covariance are immediate. Next, we use Theorem 2.7 (Lemma 2.8). The kernel
of L is given by all vectors (a,b) where b € R"*~0) and a = —R’b. The integer lattice Z™+"(*~1)
contains all such integer vectors so Ay, := Z" ™k~ N ker(L) spans L’s kernel.

Now we determine the smoothing parameter of Ay,. Rotate the space by
1 R

A [0 In(k—l)] '
This rotation yields QAy, = {0} @ Z"*~) and since rotating a covariance does not change its eigen-

values, we have /%, © 02T,y > ne(Z"*+=0) = n.(Ay). This implies LD, 1) Nower wom is
statistically close to Dzm .

We are now ready to prove Theorem 4.1.

Proof. (of Theorem 4.1) The proof’s overview is given via the following. Let
o p < Dzm, Non be a perturbation,
e u € Zj; be the input target coset,
e v=u-ApeZj be the G-lattice coset,

® X = (X1,X2)  Dzux , (G-lattice randomized over uniform coset vand o > 7.(g’), Lemma 4.2)

e« Dznl,g D)) be the concatenation of the errors, e, in Lemma 4.3,

e andy < Dzm 4 asin Lemma 4.4.

The proof is best summarized via the sequence of hybrids below:

u=v+Ap
~; Gx + Ap
= Mx; +Fxo+ Ap
~se+Fxo+ Ap
=e+ AR'xy + Ap

:e+AL<p>
X2

~gs e+ Ay.

The first ~, is through swapping the order of sampling u and v uniformly at random, then using
the fact that o > 7(G) (Lemma 4.2). The next ~; is given by Lemma 4.3. Finally, the last ~; is given
by concatenating (p,x2) Dzm+n(k_l)’ Nomer and using Lemma 4.4.

We remark that the key in the equivalences above is that we can separate x into two statistically
independent samples, x; and x2, concatenate p and x», then perform two instances of Theorem 2.7
(Lemma 2.8) on the statistically independent samples L(p,x2) and Mx;. The statistical indepen-

dence of x; and x is due to the orthogonality of Z"* and the same cannot be said if x ~ D, LG
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for a fixed v (via a fixed u). This difference highlights why we must argue security for a uniformly
random input coset u (and v).

Real distribution: The real distribution of {(A,y,u,e)} is:
A, uU(Zy),p <+ Dy, S ViEus Ap, x = (x1,X2) < Dy1(g),0r € = Mxy, and y = L(p, x2).
y ¥ v ’

Hybrid 1: Here we swap the order of sampling u and v by first sampling v < U(Z;) and setting
u:=v-+Ap: A v « U(Z;‘), p < Dy, Nox u = v + Ap. We keep x,e, and y unchanged:
x = (x1,X2) ¢ Dy1(g),.» € = Mxy, and y = L(p, x2). Then, the real distribution and Hybrid 1 are
the same.

Hybrid 2: Instead of sampling a uniform v € Zg and a G-lattice sample x = (x1,X2) <= Dy1(q),0
we sample x <= Dyni , and v = Gx € Zj. The rest remains the same:

A, x < Dynk,, v =Gx,p + D, Now: u ~; Gx + Ap, e = Mxy, and y = L(p, x2). Lemma 4.2
) ) P

implies Hybrid 1 and Hybrid 2 are statistically close.

Hybrid 3: We combine p, x2 into the joint distribution (p,x2) <= D, . D \/Sy507T

A, (p,x2) + DZm+n(’€—l>,\/W' e=Mx;,y =L(p,x2),v=Gx,and u = v+ Ap = Mx; + Fxy +
Ap.

Hybrid 4: Here we apply the linear transformation theorem on e, y (statistically independent e and
yY):

A, (p;x2) + DZm-ﬁ-n(k—l),\/W/ e < Danﬁ G2 —1)/(52—1) y < Dzms, v = Gx,and u = Mx; +
Fxs + Ap ~; AL(p,x2) + e =5 Ay + e.

Lemmas 4.3 and 4.4 imply Hybrids 3 and 4 are statistically close.

Final distribution: Sample A «+ U(Z;*™) and keep the rest of the vectors from the same distribu-
tion as Hybrid 4 (notice that the trapdoor R of A is not used to sample p, x, e and y). The final

distribution is computationally indistinguishable from Hybrid 4 assuming LWE,, ,, ; \ v/(z,).x- ]

5 Hash-and-Sign Signature Instantiated with the Approximate Trapdoor

We spell out the details of the hash-and-sign signature scheme from [GPV08] instantiated with the
approximate G-trapdoor instead of an exact trapdoor.

Recall the parameters from the last section. We set k = [log; ¢], set [ to be the number of entries
dropped from the G-trapdoor such that 1 <[ < kand m = n(2 + (k —[)). Let 0,s € R" be the
discrete Gaussian widths of the distributions over the cosets of AqL (G) and Aj (A) respectively. Let
x be the distribution of the entries of the trapdoor R chosen so that LWE,, ,, , \ v(z,),y 18 hard.

Construction 5.1. Given an approximate trapdoor sampler from Theorem 4.1, a hash function H = {H), :
{0,1}* — Ry} modeled as a random oracle, we build a signature scheme as follows.

e Gen(1*): The key-generation algorithm samples A € Z1*™ together with its (c, 3)-approximate trap-
door R from APPROX.TRAPGEN(1*). Let the range Ry of H be Z. It outputs A as the verification
key, keeps R as the secret signing key.
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e Sig(R,m): The signing algorithm checks if the message-signature pair (m,X,,) has been produced
before. If so, it outputs x,,, as the signature of m; if not, computes uw = H(m), and samples an
approximate preimage X,, <— APPROX.SAMPLEPRE(A, R, u, s). It outputs x,, as the signature and
stores (m, Xy,) in the list.

o Ver(A,m,x): The verification algorithm checks if ||x|| < fand ||A-x— H(m)|| < a. If so, it outputs
accept; otherwise, it outputs reject.

5.1 Security analysis

In the security analysis we use the following properties on the distributions produced by APPROX.SAMPLEPRE
proven in Theorem 4.1:

1. An approximate preimage of a uniformly random image is statistically close to a distribution
Dpre, which is independent of A and R.

2. For a uniformly random image u, the error vector e := u— Ax (mod ¢) is statistically close to
a distribution Der, which is also independent of A and R.

To prove that the signature satisfies the strong EU-CMA security, we need an additional “near-
collision-resistance” property for Ajtai’s function, which can be based on the standard SIS assump-
tion. Let us remark that without this property, we can still prove the signature scheme satisfies static
security based on the hardness of the approximate ISIS problem, which is tighter by a factor of two
according to Theorem 3.4.

Lemma 5.2 (The near-collision-resistance of Ajtai’s function). For any n,m,q € Nand o, € R. If
there is an efficient adversary A that given A < U(Zy*™), finds x1 # x2 € Z™ such that

Ix1]| < B and ||x2|| <p and ||Ax; — Axs (mod q)| <2«
Then there is an efficient adversary B that solves SIS, .\ m. g 2(a+8)-

Proof. Suppose B gets an HNF.SIS,, ,, ., ; 9(a4) challenge (which is as hard as SIS, ;1. 4.2(a48))
with the public matrix [I,, | A], B sends A to 4, gets back x; # x2 € Z™ such that

|x1]]| <8 and |[x2|| < B and |y:=Ax; — Axy (mod q)| <2«

B then sets z := [y’ | (x1 — x2)!]" as the solution. z is then non-zero and satisfies ||z|| < 2(a + f3)
and [I, | A]z = 0 (mod g). O

Theorem 5.3. Construction 5.1 is strongly existentially unforgeable under a chosen-message attack in the
random oracle model assuming the hardness of SIS, . 1 4 2(a+8) 414 L\WEy, 1, ¢ v .U(Z4) x-

Proof. Suppose there is a polynomial time adversary A that breaks the strong EU-CMA of the signa-
ture scheme, we construct a polynomial time adversary B that breaks the near-collision-resistance
of Ajtai’s function, which is as hard as SIS,, ,, 1, ¢ 2(a+g) due to Lemma 5.2.

To start, B sends Ajtai’s function A to A as the public key for the signature scheme. Once A makes
a random oracle query w.r.t. a message m, B samples x <— Dpre, computes u := Ax + Deyr (mod q)
as the random oracle response on m. B then replies u to A and stores (m, u) in the random oracle
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Params | Exact Approx Approx Exact Approx Approx | Exact Approx  Approx
n 512 512 512 512 512 512 512 512 512
[logy q] | 24 24 24 20 20 20 16 16 16

b 2 2 2 2 2 2 2 2 2

l 0 12 15 0 10 12 0 7 9

T 40 40 40 10 10 10 2.6 2.6 2.6

s 38317.0 29615.3 26726.3 8946.4 6919.8 6416.4 2170.7 1756.3 1618.2
m 13312 7168 5632 11264 6144 5120 9216 5632 4608
[Ix||2 4441737.7 2521387.0 2035008.5 | 956758.1 545470.5 464022.0 | 211100.9 133305.5 109339.1
[1%]| 0o 184653 111909 94559 38507 25275 24762 8848 6853 6334
l|z]|2 0 374014.0  2118987.6 | 0 94916.6 3436829 | 0 118979  46428.4
1z]| o 0 46895 346439 0 13265 52789 0 1439 7213
PK 37.50 19.50 15.00 26.25 13.75 11.25 17.00 10.00 8.00

Sig 25.68 13.53 10.51 18.87 10.01 8.29 13.16 7.83 6.30
LWE 100.0 100.0 100.0 102.8 102.8 102.8 104.7 104.7 104.7
AISIS | 80.2 85.8 81.1 82.0 87.5 84.3 83.7 89.0 88.1

o 1.00685 1.00643 1.00678 1.00670  1.00631  1.00653 | 1.00658  1.00621  1.00628
k 174 193 177 180 199 188 186 204 201

Figure 4: Summary of the concrete parameters, with base b = 2, aiming at around 80 to 90-bit secu-
rity. The sizes of PK and Sig are measured in kB. 7 is the Gaussian width of the secret matrix R. s
is the Gaussian width of the preimage. “LWE” refers to the security level of the pseudorandomness
of the PK. “AISIS” refers to the security level of breaking approximate ISIS. 6 and & are the variables
used in the AISIS security estimation.

storage, (m, x) in the message-signature pair storage. Once A makes a signing query on the message
m (wlog assume m has been queried to the random oracle before, since if not B can query it now),
B finds (m,x) in the storage and reply x as the signature. The signatures and the hash outputs
produced by B are indistinguishable from the real ones due to the properties of the distributions
Dpre and Dy, and the assumption that a real public key is indistinguishable from random under
LWEy n.gx.U(Zg) x:

Without loss of generality, assume that before A tries to forge a signature on m*, A has queried H
on m*. Denote the pair that B prepares and stores in the random oracle storage as (m*, u*), and
the pair in the signature storage as (m*, x*). Finally A outputs x as the forged signature on m*. So
we have ||A(x — x*) (mod ¢)|| < 2a. It remains to prove that x # x* so as to use them as a near-
collision-pair. If m* has been queried to the signing oracle before, then x # x* by the definition of
a successful forgery; if m* has not been queried to the signing oracle before, then x* is with high
min-entropy by the settings of the parameter, so x # x* with overwhelming probability. O

5.2 Concrete parameters

We provide a proof-of-concept implementation of the signature. Experiments are performed over
several groups of parameters using different dimensions n, moduli ¢, bases b, targeting different
security level (mainly around 80 to 90-bit and 170 to 185-bit security). In each group of parameters,
we use fixed n, ¢, b, and compare the use of exact trapdoor (under our reference implementation)
versus approximate trapdoor. In Figures 4 and 5 we list 6 groups of parameters.

Methods for security estimation. Let us first explain how we make the security estimations. The
concrete security estimation of lattice-based cryptographic primitive is a highly active research area
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Params | Exact Approx  Approx | Exact Approx  Approx | Exact Approx  Approx

n 512 512 512 1024 1024 1024 1024 1024 1024
Mog, q] | 16 16 16 18 18 18 18 18 18

b 4 4 4 8 8 8 4 4 4

l 0 2 4 0 2 3 0 4 5

T 26 26 26 2.8 2.8 2.8 2.8 2.8 2.8

s 31142 28333 25056 |8861.1 78248 72279 |51188 42978 40155
m 5120 4096 3072 8192 6144 5120 11264 7168 6144

Ix]|2 223740.1 183004.9 138145.7 | 805772.9 604711.5 516446.3 | 552713.4 369981.2 311153.9
1% ]| 0o 13320 11868 8948 35348 28823 30435 19274 18283 14927

Izl |0 14023  19807.1 |0 73165 543798 |0 29958.0  115616.4
Izlo | O 174 2448 0 905 6680 0 3025 12070
PK 9.00 7.00 5.00 15.75 1125  9.00 22.50 13.50 11.25
Sig 7.62 5.94 445 13.70 10.14 8.36 18.74 11.09 9.38
LWE | 1047 1047 1047 192.7 192.7 192.7 192.7 1927 1927
AISIS | 82.8 85.5 87.8 165.3 172.9 174.9 175.8 185.7 1837

5 1.00664 1.00645 1.00629 |1.0036  1.00347 1.00343 |1.00342 1.00326 1.00329
k 183 192 200 462 488 495 498 532 525

Figure 5: Summary of the concrete parameters, with base b > 4, aiming at around 80 to 90-bit and
170 to 184-bit security.

and more sophisticated methods are proposed recently. Here we use relatively simple methods to
estimate the pseudorandomness of the public-key (henceforth “LWE security”), and the hardness of
breaking approximate ISIS (henceforth “AISIS security”). Let us remark that our estimations may
not reflect the state-of-art, but at least provide a fair comparison of the parameters for the exact
trapdoor versus the approximate trapdoor.

LWE security depends on the choices of g, n, and the Gaussian width 7 of the trapdoor R. The
estimation of LWE security was done with the online LWE bit security estimator with BKZ as the
reduction model' [ACD*18].

For the approximate ISIS problem, the only direct cryptanalysis result we are aware of is the work
of Bai et al. [BGLS19], but it is not clearly applicable to the parameters we are interested. Instead
we estimate AISIS through ISIS,, ;, 4 o+ following the reduction in Lemma 3.5, where o and 3
are the upper-bounds of I> norm of the error z and preimage x. We estimate the security level
of ISIS;; m.q,a+5 based on how many operations BKZ would take to find a vector in the lattice A-(A)
of length o + 3. Further, we can throw away columns in A. We choose to only use 2n columns
of A as done in [BFRS18], denoted A, since Minkowski’s theorem? tells us Aql(Agn) has a short
enough vector. Following [APS15, ACD"18], we use sieving as the SVP oracle with time complexity
229264164 in the block size, k. BKZ is expected to return a vector of length §2"det"/?" for a lattice
of dimension 2n. Hence, we found the smallest block size k achieving the needed 4 corresponding
to forging a signature, a—\%ﬁ = 42", Finally, we used the heuristic § ~ (o= (7k)/*)1/2:=1) to deter-
mine the relation between k and §, and we set the total time complexity of BKZ with block-size k,
dimension 2n as 8 - 2n - time(SV P) = 8 - 2n - 2:292k+164 [Che13, APS15]°.

'https://bitbucket.org/malb/lwe-estimator

2For any lattice L, A\; < /7 det(L)'/" where r is the rank of the lattice.

*We use the “magic eight tour number” for BKZ to keep consistency with the LWE online estimator. We have not
incorporated the more recent developments in [Duc18] and [ADH"19].
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The comparison. For an estimation of 80-bit* security, our reference implementation for the exact
trapdoor under the modulus ¢ ~ 2?4 and base b = 2 matches the parameters reported in [BB13]
(the parameters in the other implementation [BFRS18, GPR"18] are possibly measured in different
ways). We also use smaller moduli and bigger bases to reduce the size and increase the security
level. The parameters in Figures 4 and 5 suggest that for all the choices of ¢ and b, using the ap-
proximate gadget trapdoor by setting [ = [(log; q)/2] saves about half of the sizes in the public key
and signatures comparing to using the exact trapdoor, with even a slight increase in the security
estimation.

Our implementation shows that the sizes of the public-key & signature can be reduced to 5 kB & 4.45
kB for an estimation of 88-bit security, and 11.25 kB & 9.38 kB for an estimation of 184-bit security.
Those are still larger than, but much closer to the sizes for the signatures based on the rejection
sampling approach [Lyul2, BG14, DKL*18, ABB*19]. As a reference, the sizes of the public-key &
signature for gTESLA [ABB*19] are 4.03 kB & 3.05 kB for an estimation of 128-bit security, and 8.03
kB & 6.03 kB for an estimation of 192-bit security.
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Here we verify the approximate gadget trapdoor construction given in Section 4 holds in the ring
setting [Mic02, LPR10].
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Rings. Let ¢, (z) be the 2n-th cyclotomic polynomial where n is a power of two, R := Z[x]/pan(x)
be the associated cyclotomic ring, and ¢ > 2 be an integer modulus so that R, := R/qR is the
polynomial ring with coefficients modulo ¢. Usually ¢ is taken as a prime with ¢ = 1 mod 2n in
order to use the Number Theoretic Transform (NTT) [LMPRO8]. The ring dimension, n, ultimately
depends on an underlying security parameter, \.

Coefficient embedding. Geometrically, we are concerned with the coefficient embedding where each
polynomial h(z) € R is associated with its ordered vector of coefficients,
h‘(x) —h= (h()a hl? e 7h'n—1) ez".

Multiplication by a polynomial g(z) = Z?:_ol giz' € R is given by the anti-cyclic (also called nega-
cyclic) matrix

[ g0 —9n—-1 —YGn-2 - —91-
g1 90 —9n-1 - —G2

U(g) = | 92 g1 9o T Tg3| e g,
LIn—1  Gn—2 gn—-3 g0 |

Therefore, we have #(g) - h as the coefficient embedding of h(x) - g(x) € R. In fact, the map
Y R — Z™" taking a polynomial and mapping it to its anti-cyclic matrix is a (another) ring
embedding, from R to n x n integer matrices. The same holds when we consider the quotient
R,, except now the previous is expressed via operations modulo g. An important feature of the
coefficient embedding is that scalars in the ring, « € Z C R (or Z; C R,), embed as the scalar
matrix, ¥ (a) = a- I, € Z"*" (or Z;*"). Further, vectors over R or R, have an entry-wise coefficient
ernbedding: VvV = (Uo, s ,Ul—l) € Rl — ('UO,07 5, Von—1y 0 5 VI—1,05 " 7 yvl—l,n—l) S an. We suggest
the reader regularly traverse between the rings (R or R,) and their coefficient embedding, in Z" or
Ly, as well as their representations as linear transformations, while reading the remainder of this
section. Lastly, our norm will be the normal Euclidean norm under the the coefficient embedding,

[ = Tl (x)]2-

Ring-SIS and Ring-ApproxSIS. The ring-SIS problem [Mic02] is: given a uniformly random a &
R, find a short (||x|| < ), non-zero vector x € R™ such that a’x = 0 € R,.

Definition A.1 (Ring Approximate ISIS). For any m,q € Nand «, 8 € R, define the ring approximate
inhomogeneous short integer solution problem R-Approx.ISISy, 4.« s as follows: Given a € Ry, y € Ry, find
a vector x € R™ such that ||x|| < 8, and there is an element z € R satisfying

|zl <a and a'x=y+z (mod q).

Further, an approximate trapdoor is any string 7 allowing one to efficiently find a short x such that

alx ~ y giveny € R,.

A1 Approximate Trapdoor Scheme in the Ring Setting

Here we sketch the approximate trapdoor scheme in the ring setting.
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Algorithm 4: RINGGSAMP.CUT(u, 0)

Input: u € Ry, 0 € R
Output: z € R* ! satisfying Fz ~ u € R,

1 forie {0,---,n—1}do

2 x; < GSAMP.CUT(u;,0)

3 end

4 Letx := (xq,--- ,X,_1) € Z"k-D),
5

return z .= Pyx € Rk,

Figure 6: The pseudocode for the approximate G-lattice sampler in the ring setting. Note, we store
the output as a vector of polynomials.

Approximate G-Sampling. Our approximate gadget is now the vector
! k—1 k—1
f=(, -, 0"7)e R,
and under the coefficient embedding, we have

_ il k—1 nxn(k—I
U(f) =F = [t'L,, -, bF'L,] € Znkh),

Next, let P; be the permutation matrix satisfying FP; = I, @ (b, -+ , bk~ 1) € Z0*"*~") (mapping
the coefficient embedding of f to the approximate gadget used in Section 4). This reduces the task of
approximate G-sampling in the ring setting to approximate G-sampling as done in Section 4, given
as the pseudocode of GSAMP.CUT in Algorithm 1. The pseudocode for the approximate G-sampler
in the ring setting is given in Figure 6.

Let z < RINGGSAMP.CUT(u, o), and let u € Zq be u's coefficient embedding. Then, we have z =

P;x where x € Z"*~!) gatisfies (I, ® [b!,---,b*"!])x ~ u mod ¢. Notice under the coefficient
embedding, we have

Fij(z) = L, @b, 0 )Phz = T, @ ', 0" "))x,

and this is the same distribution as in Section 4.

Public key Our trapdoor is a random matrix with polynomial entries, R € R?>*(*~1) whose coef-
ficients are chosen independently from a distribution x over Z, usually a discrete Gaussian. Let R
have ry, ry as its first and second rows, respectively. Then, the public key is

al = [(1, a)|f — ary — 1‘1] c R;XQ—HC_[

where a € R, is uniformly sampled.
Preimage sampling. Now given a coset u € R,, the procedure to sample a short x € R***~! such
that a’x ~ u € R, is clear.
1. Sample a perturbation p <— D Reh-L /S, where
) P

AP [RRt Rt}
p =

R I

is now a block matrix with anti-cyclic blocks.
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2. Compute the shifted coset, v = u — a’x € R, and sample z < RINGGSAMP.CUT(v, o).

3. Return the approximate preimage sample:
yop+ [uernt

The perturbation sampling techniques previously used in the ring versions of MP12, [GM18, DP16,
DN12], immediately apply to the above procedure.

A.2 Analogous Lemmas and Theorem

Here we state the analogous lemmas needed to prove Theorem A.2 and either sketch their proofs
or their proofs are immediate from the coefficient embedding.

Theorem A.2. There exists probabilistic, polynomial time algorithms RINGAPPROX.TRAPGEN(-) and
RINGAPPROX.SAMPLEPRE(:, -, -, -) satisfying the following.

1. RINGAPPROX.TRAPGEN(\) takes as input a security parameter X and returns a matrix-approximate
trapdoor pair (at, R) € RL*PTF x p2x(k-0),

2. Let a be generated with an approximate trapdoor as in Section A.1, RINGAPPROX.a~!(-) denote the
approximate preimage sampling algorithm, RINGAPPROX.SAMPLEPRE(a, R, s, -). The following two
distributions are statistically indistinguishable:

{(a,y,u,e) : u+ U(R,),y + RINGAPPROX.a *(u),e =u —a'y mod g}

and

{(aa}’aaty +e € Ryye mod q) 1y < Dprm s, e < DR,U (b2l_1)/(b2_1)}

for any o > Vb? + lw(y/logn) and s > \/023%(R) + w(y/logn). Furthermore, in the second dis-
tribution, a is computationally indistinguishable from random assuming RLWE over power of two
cyclotomic rings.

The algorithms RINGAPPROX.TRAPGEN(-) and RINGAPPROX.SAMPLEPRE(-, -, -, -) are implicit from
the methods sketched below.

Now, consider an integer n > 1 ring dimension, an integer modulus ¢ > 1, an integer base b > 1 as
fixed and k = [log;, q]. Then, we have the gadget matrix over the ring as g = [1,b,--- ,b*71] € R’;.

Notice that g € R* embeds as
[LoL,--- 0" ') € Zp"mk

under the coefficient embedding. Let G := I, ® [1,b,--- ,bF71] € Z;‘X”k be the normal G-matrix,
and P be the permutation matrix satisfying [I, b1, - -- ,b¥~11] = GP. This leads us to the following
fact.

Fact A.3. Letu € Ry, At (gh) = {x € R* : g'x = u € R,}. Then under the coefficient embedding, we have
Ay (g') = Pt A (G) where u € Z! is the embedding of u € R
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The proof is immediate from the definition of coefficient embedding. As a corollary, we see that for
every fixed € > 0, the two smoothing parameters are equal, ne(Aj(gt)) = ne(Aj(G)). In addition,
Fact A.3, gives us the following lemma.

Lemma A.4. For any o > n.(A*(gt)), the random process of first choosing u <« U(R,) then returning
X ¢ Dy 1(gt),» 1 statistically close to sampling x <— Dpx .

And because we can implement an algorithm to sample D, 1 (gt) , (With support Z" or R* under
the embedding) with n independent calls to the normal G-sampler [MP12, GM18] (with support
over Zk), we have the analogous lemma to Lemma 4.3. In short, the coefficient embedding gives us
that the error is distributed as € = (I, ® L) - Dynt , &~ Dp o with o’ = o/(b% —1)/(b> — 1) and
L= (1,b,---,b71,0) € ZF.

Next, we argue the analogous lemma to Lemma 4.4 is true. Let R € R** be the trapdoor to
our ring version of the approximate trapdoor scheme. Under the coefficient embedding, 1)(R) is a
block matrix with anti-cyclic blocks (we use the trapdoor as a linear transformation). Following the
steps of the proof of Lemma 4.2 in the ring setting, we note that we can first permute coordinates
under the coefficient embedding to match the coordinates used in the proof of Lemma 4.2. Further,
the structure of the trapdoor R does not affect the proof. Finally, the same rotation Q is used
over R™T* =l where m = 2 + k — [, and R™*~! is identified with Z""tn(*=1) under the coefficient
embedding, and the proof follows. We summarize with the following lemma. Without loss of
generality, we can again permute the columns of the gadget matrix’s embedding to G’ := [M|F].
This allows us to express truncation and convolution as a simple linear transformation: y = L(p, x2)
for L := [I,,|R’].

(k=)

Lemma A.5. Forany € > 0, \/%, > n.(R*) = n.(Z"%), and o > n.(R*) (where %, is now a block matrix
with anti-cyclic blocks), L - D, +h /5507, is statistically close to Dpm .

Finally, the proof of Theorem A.2 follows from the previous lemmas and is proved as in Section 4.
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