
SIKE Round 2 Speed Record on
Embedded Processors

Hwajeong Seo1, Amir Jalali2, and Reza Azarderakhsh2

IT Department, Hansung University, Seoul, South Korea, hwajeong84@gmail.com
Department of Computer and Electrical Engineering and Computer Science,

Florida Atlantic University, FL, USA,
{ajalali2016,razarderakhsh}@fau.edu

Abstract. We present the optimized software implementation of Super-
singular Isogeny Key Encapsulation (SIKE) round 2, on low-end 32-bit
ARM Cortex-M4 microcontrollers and high-end 64-bit ARM Cortex-A53
processors. The proposed library introduces a new speed record of SIKE
protocol on the target embedded processors. We achieved this record by
adopting several state-of-the-art engineering techniques as well as highly-
optimized hand-crafted assembly implementation of finite field arith-
metic. The benchmark result on STM32F4 Discovery board equipped
with low-end 32-bit ARM Cortex-M4 microcontroller shows that the en-
tire key encapsulation at NIST security level 1 (i.e. SIKEp434) takes
about 252 million clock cycles (i.e. 1.5 seconds @168MHz). In contrast
to the previous optimized implementation of the isogeny-based key ex-
change on low-power 32-bit ARM Cortex-M4, our result shows a feasi-
bility of using SIKE mechanism on low-end microcontrollers. The SIKE
round 2 key encapsulation mechanism on Odroid-C2 board equipped
with high-end 64-bit ARM Cortex-A53@1.536GHz takes only 65 ms at
NIST security level 1. Considering SIKE’s extremely small key size in
comparison to other NIST PQC round 2 candidates, our result implies
that SIKE is one of the promising candidates for key encapsulation mech-
anism on low-end and high-end embedded devices in the quantum era.

Keywords: Post-quantum cryptography, SIKE, Montgomery multipli-
cation, 32-bit ARM Cortex-M4, 64-bit ARM Cortex-A53

1 Introduction

Initiated by the National Institute of Standards and Technology (NIST), Post-
Quantum Cryptography (PQC) has been elevated to a standardization process
to solicit, evaluate, and standardize one or more quantum-resistant public-key
cryptographic algorithms [30]. To prepare for security concerns caused by quan-
tum computers, in 2016, NIST called for the cryptographic algorithms which
were assumed to be resistance against high-scale quantum computers. These
proposals provided key encapsulation mechanism (KEM) or digital signature
algorithms from different arithmetic structures, resulting in different character-
istics and parameters. Recently, NIST announced approved candidates for round

mailto:Cortex-A53@1.536GHz
mailto:ajalali2016,razarderakhsh}@fau.edu
mailto:hwajeong84@gmail.com

2 Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh

2 which are the most promising candidates, in terms of security, performance,
and compatibility with current technology. For the key encapsulation mechanism,
only 17 candidates made it through to the second round for being evaluated and
analyzed from different perspectives.

Different PQC candidates are constructed on hard mathematical problems
which are assumed to be impossible to solve even for large-scale quantum com-
puters. These problems can be categorized into five main categories: code-based
cryptography, lattice-based cryptography, hash-based cryptography, multivariate
cryptography, and supersingular isogeny-based cryptography, see, for instance
[10].

Supersingular Isogeny Key Encapsulation (SIKE) mechanism is one of the
PQC candidates which is constructed on the hardness of solving isogeny maps
between supersingular elliptic curves. In fact, SIKE is the only candidate that
offers the quantum-resistance cryptographic construction over elliptic curves, re-
sulting in well-known structures in implementation perspective. The proposed
key encapsulation mechanism is derived from the original Jao-De Feo’s Diffie-
Hellman key-exchange and public-key encryption algorithms [20]. However, con-
structing cryptographic structures from hardness of supersingular isogeny graphs
was introduced by Charels-Lauter-Goren [9].

The first round SIKE submission [6] offered three different security levels
known as SIKEp503, SIKEp751, and SIKEp964. According to the best known
quantum attacks on solving supersingular isogeny problem by that time, the
proposed security levels met NIST’s level 1, 3, and 5 requirements, respectively.

However, recent studies on the cost of solving isogeny problem on quantum
computers by Adj et al. [1] revealed that the security assumptions for SIKE
was too conservative. In fact, a set of realistic models of quantum computation
on solving Computational Supersingular Isogeny (CSSI) problem in [1] suggests
that the Oorschot-Wiener golden collision search is the most powerful attack on
the CSSI problem, resulting in significant improvement on the SIKE’s classical
and quantum security levels.

Accordingly, the second round SIKE [4] offers a new set of security levels
which are more realistic and provide significant improvement on the key encap-
sulation performance. In particular, decreasing the bit-length of SIKE’s primes
translates to notable performance improvement, making this scheme suitable for
many potential applications on low-end and high-end embedded devices.

In CANS’16, Koziel et al. presented first SIDH implementations on 32-bit
ARM Cortex-A processors [25]. In 2017, Jalali et al. presented first SIDH im-
plementations on 64-bit ARM Cortex-A processors [18]. In CHES’18, Seo et al.
improved previous SIDH and SIKE implementations on high-end 32/64-bit ARM
Cortex-A processors [28]. At the same time, the implementations of SIDH on In-
tel and FPGA are also successfully evaluated [14, 8, 22, 24]. Afterward, in 2018,
first implementation of SIDH on low-end 32-bit ARM Cortex-M4 microcontroller
was suggested [23].

In this work, we provide a full report on the highly-optimized implementa-
tion of SIKE on low-end 32-bit and high-end 64-bit ARM embedded processors.

3 SIKE Round 2 Speed Record on Embedded Processors

Our proposed library takes advantage of state-of-the-art engineering techniques
as well as low level assembly optimizations. We studied different approaches for
finite field arithmetic implementation over SIKE’s new primes. Our benchmark
results offer significant improvement in performance compared to previous im-
plementations, suggesting the possible integration of this scheme on embedded
processors in the future.

2 SIKE Round 2 on ARM Cortex-M4

2.1 ARM Cortex-M4 Architecture

With over 100 billion ARM-based chips shipped worldwide as of 2017 [2], ARM
is the most popular instruction set architecture (ISA), in terms of quantity. In
this work, we firstly target the popular low-end 32-bit ARM Cortex-M4 micro-
controllers, which belong to the “microcontroller” profile implemented by cores
from the Cortex-M series. The ARM Cortex-M architecture is a reduced instruc-
tion set computer (RISC) using a load-store architecture. The ARM Cortex-M4
microcontrollers support a three-stage pipeline, and memory accesses involving
1 register and n registers take 2 cycles and n + 1 cycles, respectively.

As other traditional 32-bit ARM architectures, the ARM Cortex-M4 ISA
is equipped with 16 32-bit registers (R0∼R15), from which 15 (R0∼R12, R13
(SP), R14 (LR)) are available. R13, R14, and R15 registers are reserved for
stack pointer, link register, and program counter, respectively. The R13 and R14
registers can be freed up by saving it in slower memory and retrieving it after
the register has been used.

Since the maximum capacity of the 15 registers is of only 480 bits (32 × 15),
efficient use of the available registers to minimize the number of memory accesses
is a critical strategy for optimized implementations of multi-precision multipli-
cations (i.e. 512-bit and 768-bit). The ARM Cortex-M4 provides an instruction
set supporting 32-bit operations or, in the case of Thumb and Thumb2, a mix of
16- and 32-bit operations. The instruction set is comprised of standard instruc-
tions for basic arithmetic (i.e. addition and addition with carry operations) and
logic operations. However, in contrast to other lower processor classes, the ARM
Cortex-M4 supports for the so-called DSP instructions, which include unsigned
multiplication with double accumulation UMAAL instruction.

The UMAAL instruction performs a 32 × 32-bit multiplication followed by ac-
cumulations with two 32-bit values. This instruction achieves the same latency
(i.e. 1 clock cycle) and throughput of the unsigned multiplication instruction,
which means that accumulation (i.e. two 32-bit addition operations) is virtually
executed for free. The detailed descriptions of multiplication operations are as
follows:

– UMULL (unsigned multiplication):
UMULL R0, R1, R2, R3 computes (R1 k R0) ← R2 × R3.

– UMLAL (unsigned multiplication with accumulation):
UMLAL R0, R1, R2, R3 computes (R1 k R0) ← (R1 k R0) + R2 × R3.

4 Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh

– UMAAL (unsigned multiplication with double accumulation):
UMAAL R0, R1, R2, R3 computes (R1 k R0) ← R1 + R0 + R2 × R3.

The popularity of ARM Cortex-M4 microcontrollers in different applications
introduced a post-quantum cryptography software library (pqm4) which targets
this family of microcontrollers [21]. The pqm4 library provides a framework for
benchmarking and testing, started as a result of the PQCRYPTO project funded
by the European Commission in the H2020 program. The library currently con-
tains implementations of 10 post-quantum key-encapsulation mechanisms and 3
post-quantum signature schemes targeting the ARM Cortex-M4 family of micro-
controllers. In particular, pqm4 targets the STM32F4 Discovery board, featuring
an ARM Cortex-M4 CPU@168MHz, 1MB of Flash, and 192KB of RAM. The
library offers a simple build system that generates an individual static library
for each implementation for each scheme. After compilation, the library pro-
vides automated benchmarking for speed and stack usage. As a result, we chose
to evaluate the performance of our proposed library with pqm4 framework to
provide a fair and valid comparison with other PQC schemes.

In the following Section, we describe the proposed engineering techniques
for designing highly-optimized arithmetic libraries, targeting different security
levels of SIKE schemes on 32-bit ARM Cortex-M4 microcontrollers.

2.2 Multiprecision Multiplication

In this work, we describe the multi-precision multiplication method in multipli-
cation structure and rhombus form.

Figure 1 illustrate the strategies for implementing 256-bit multiplication on
32-bit ARM Cortex-M4 microcontroller. Let A and B be operands of length m
bits each. Each operand is written as A = (A[n − 1], ..., A[1], A[0]) and B =
(B[n − 1], ..., B[1], B[0]), where n = dm/we is the number of words to represent
operands, and w is the computer word size (i.e. 32-bit). The result C = A · B is
represented as C = (C[2n − 1], ..., C[1], C[0]). In the rhombus form, the lowest
indices (i, j = 0) of the product appear at the rightmost corner, whereas the
highest indices (i, j = n − 1) appear at the leftmost corner. A black arrow
over a point indicates the processing of a partial product. The lowermost points
represent the results C[i] from the rightmost corner (i = 0) to the leftmost corner
(i = 2n − 1).

Efficient register utilization The Operand Caching (OC) method follows
the product-scanning approach for inner loop but it divides the calculation (i.e.
outer loop) into several rows [17]. The number of rows directly affects the overall
performance, since the OC method requires to load the operands and load/store
the intermediate results by the number of rows1. Table 1 presents the compar-
ison of memory access complexity depending on the multiplication techniques.
1 The number of rows is r = bn/ec, where the number of needed words (n = dm/we),
the word size of the processor (w) (i.e. 32-bit), the bit-length of operand (m), and
operand caching size (e) are given.

5 SIKE Round 2 Speed Record on Embedded Processors

Table 1: Comparison of multiplication methods, in terms of memory-access complexity.
The parameter d defines the number of rows within a processed block.

Method Load Store

Operand Scanning 2 2n + n 2 n + n
Product Scanning [11] 2 2n 2n
Hybrid Scanning [16] 22dn /de 2n
Operand Caching [17] 2dn 2/ee dn 2/ee + n

Refined Operand Caching (This work) 22dn /(e + 1)e + 3(bn/(e + 1)c) 2dn /(e + 1)e + n

Table 2: Comparison of multiplication methods for different Integer sizes, in terms of the
number of memory access on 32-bit ARM Cortex-M4 microcontroller. The parameters
d and e are set to 2 and 3, respectively.

Method
448-bit 512-bit 768-bit

Load Store Total Load Store Total Load Store Total

OS 406 210 616 528 272 800 1,176 600 1,776

PS 392 28 420 512 32 544 1,152 48 1,200

HS 196 28 224 256 32 288 576 48 624

OC 132 80 212 172 102 274 384 216 600

R-OC 107 63 170 140 80 220 306 168 474

Our optimized implementation (i.e. Refined Operand Caching) is based on the
original OC method but we optimized the available registers and increased the
operand caching size from e to e + 1. In the equation, the number of memory
load by 3(bn/(e + 1)c) indicates the operand pointer access in each row.

Moreover, larger bit-length multiplication requires more number of memory
access operations. Table 2 presents the number of memory access operations in
OC method for different multi-precision multiplication size. In this table, our
proposed R-OC method requires the least number memory access for different
length multiplication. In comparison with original OC implementation, our pro-
posed implementation reduces the total number of memory accesses by 19.8 %,
19.7 %, and 21 % for 448-bit, 512-bit, and 768-bit, respectively2 .

In order to increase the size of operand caching (i.e. e) by 1, we need at
least 3 more registers to retain two 32-bit operand limbs and one 32-bit interme-
diate result value. To this end, we redefine the register assignments inside our
implementation. We saved one register for the result pointer by storing the inter-
mediate results into stack. Moreover, we observed that in the OC method, both
operand pointers are not used at the same time in the row. Therefore, we don’t
need to maintain both operand pointers in the registers during the computations.
Instead, we store them to the stack and load one by one on demand.

Using the above techniques, we saved three available registers and utilized
them to increase the size of operand caching by 1. In particular, three registers
are used for operand A, operand B, and intermediate result, respectively. We

2 Compared with original OC implementation, we reduce the number of row by 1
(4 → 3), 2 (5 → 3), and 2 (7 → 5) for 448-bit, 512-bit, and 768-bit, respectively.

6 Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

C[0]C[14]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

2

C[0]C[14]

Init

1

Init

1

2

C[0]C[14]

1

2

3
4

5

Q[0]M[7]

Q[0]M[15]

Q[15]M[15]

Q[15]M[7]

T[7]T[22]T[30]

T[7]T[30]

1

2

3

4

1

Init

1-F

1-R
1-L

1-B

Init

1
I-FI-B

1

2

4

3

5

1-F

1-M
1-B

1

2-F

2-M
2-B

2

3-F

3-M
3-B

3

4-F

4-M
4-B

4

Fig. 1: Proposed 256-bit Refined Operand Caching multiplication at the word-level
where e is 4 on ARM Cortex-M4, Init
 : initial block;
: order of rows; F1
: front part;
R
: middle left part; B
: middle right part; L
: back part.

state that our utilization technique imposes an overhead in memory access for
operand pointers. However, since in each row, only three memory accesses are
required, the overall overhead is negligible to the obtained performance benefit.

Optimized front parts As it is illustrated in Figure 1, our R-OC method starts
from an initialization block (Init section). In the Init section, both operands
are loaded from memory to registers and the partial products are computed.
From the row1, only one operand pointer is required in each column. The front
part (i.e. I-F and 1-F) requires partial products by increasing the length of
column to 4.

We redesign the front part with product scanning. In contrast to Fujii’s
approach, we used UMULL and UMAAL instructions. As a result, the register ini-
tialization is performed together with unsigned multiplication (i.e. UMULL). This
technique improves the overall clock cycles since each instruction directly as-
signs the results to the target registers. In particular, we are able to remove all
the register initialization routines, which is 9 clock cycles for each front part
compared to [15]. Moreover, the intermediate results are efficiently handled with
carry-less MAC routines by using the UMAAL instructions. Figure 2 presents our
4-word strategy in further details.

Efficient instruction ordering The ARM Cortex-M4 microcontrollers are
equipped with 3-stage pipeline in which the instruction fetch, decode, and exe-
cution are performed in order. As a result, any data dependency between consec-
utive instructions imposes pipeline stalls and degrades the overall performance
considerably. In addition to the previous optimizations, we reordered the MAC
routine instructions in a way which removes data dependency between instruc-
tions, resulting in minimum pipeline stalls. The proposed approach is presented

7 SIKE Round 2 Speed Record on Embedded Processors

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
U
LL

rHI

rLO

B

A

U
M
U
LL

rHI

rLO

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
U
LL

rHI

rLO

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
U
LL

rHI

rLO

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

U
M
A
A
L

rHI

rLO

B

A

U
M
A
A
L

rHI

rLO

rLO

rHI

B

A

rLO

rHI

1-F1-R

A[0]

B[0]

C[0]

C[1]

C[2]

C[3]C[4]

C[4]

A[0]

B[1]

A[1]

B[0]

A[2]

B[0]

A[1]

B[1]

A[0]

B[2]

A[3]

B[0]

A[2]

B[1]

A[1]

B[2]

A[0]

B[3]

A[3]

B[1]

A[2]

B[2]

A[1]

B[3]

A[0]

B[4]

Fig. 2: 4-word integers with the product scanning approach using the UMULL and UMAAL
instructions for front part of OC method.

8 Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh

in Figure 2 (1-R section). In this Figure, the operand and intermediate result are
loaded from memory and partial products are performed column-wise as follows:

. . .
LDR R6, [R0, #4 ∗ 4] //Loading operand B[4] from memory
LDR R1, [SP, #4 ∗ 4] //Loading intermediate result C[4] from memory
UMAAL R14, R10, R5, R7 //Partial product (B[1]*A[3])
UMAAL R14, R11, R4, R8 //Partial product (B[2]*A[2])
UMAAL R14, R12, R3, R9 //Partial product (B[3]*A[1])
UMAAL R1, R14, R2, R6 //Partial product (B[4]*A[0])
. . .

The intermediate result (C[4]) is loaded to the R1 register. At this point, up-
dating R1 register in the next instruction results in pipeline stall. To avoid this
situation, first, we updated the intermediate results into other registers (R10,
R11, R12, R14), while R1 register was updated during the last step of MAC. We
followed a similar approach in 1-L section, where operand (A) pointer is loaded
to a temporary register, and then the column-wise multiplications are performed
with the operands (A[4], A[5], A[6], and A[7]). In the back part (i.e. 1-B), the
remaining partial products are performed without operand loading. This is effi-
ciently performed without carry propagation by using the UMAAL instructions.

2.3 Multiprecision Squaring

Most of the optimized implementations of cryptography libraries use optimized
multiplication for computing the square of an element. However, squaring can
be implemented more efficiently since using one operand reduces the overall
number of memory accesses by half, while many redundant partial products can
be removed (i.e. A[i] × A[j] + A[j] × A[i] = 2 × A[i] × A[j]).

Similar to multiplication, squaring implementation consists of partial prod-
ucts of the input operand limbs. These products can be divided into two parts:
the products which have two operands with the same value and the ones in which
two different values are multiplied. Computing the first group is straightforward
and it is only computed once for each limb of operand. However, computing the
latter products with different values and doubling the result can be performed in
two different ways: doubled-result and doubled-operand. In doubled-result tech-
nique, partial products are computed first and the result is doubled afterwards
(A[i] × A[j] → 2 × A[i] × A[j]), while in doubled-operand, one of the operands
is doubled and then multiplied to the other value (2 × A[i] → 2 × A[i] × A[j]).

In this work, we proposed a hybrid approach for implementing a highly-
optimized squaring operation which is explicitly suitable for SIKE/SIDH ap-
plication. In general, doubling operation may result in one bit overflow which
requires an extra word to retain. However, in the SIDH/SIKE settings, moduli
are smaller than multiple of 32-bit word (434-bit, 503-bit, and 751-bit) which
provide an advantage for optimized arithmetic design. Taking advantage of this

9 SIKE Round 2 Speed Record on Embedded Processors

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

A[0]A[0]A[7]A[7]

C[0]C[7]C[14]

C[0]

Init

1

2
C[14]

C[0]C[14]

Init

1

C[0]C[14]

1

2

3

Init

12

Init

1

1
23

Fig. 3: 255-bit proposed squaring at the word-level on ARM Cortex-M4, Init: initial

block; 1 2
 →
: order of rows.

fact, we designed our squaring implementation based on doubled-operand ap-
proach. We divided our implementation into three parts: one sub-multiplication
and two sub-squaring operations. We used R-OC for sub-multiplication and SBD
for sub-squaring operations. Figure 3 illustrates our hybrid method in detail.
First, the input operand is doubled and stored into the stack memory. Taking
advantage of doubled-operand technique, we perform the initialization part by
using R-OC method.

Second, the remaining rows 1 and 2 are computed based on SBD methods. In
contrast to previous SBD method, all the doubling operations on intermediate
results are removed during MAC routines. This saves several registers to dou-
ble the intermediate results since doubled-results have been already computed.
Furthermore, our proposed method is fully scalable and can be simply adopted
to larger integer squaring.

2.4 Modular Reduction

Modular multiplication is a performance-critical building block in SIDH and
SIKE protocols. One of the most well-known techniques used for its implemen-
tation is Montgomery reduction [26]. We adapt the implementation techniques
described in sections 2.2 and 2.3 to implement modular multiplication and squar-
ing operations. Specifically, we target the parameter sets based on the primes
p434, p503, and p751 for SIKE round 2 protocol [12, 5]. Montgomery multipli-
cation can be efficiently exploited and further simplified by taking advantage of
so-called “Montgomery-friendly” modulus, which admits efficient computations,
such as all-zero words for lower part of the modulus.

The efficient optimizations for the modulus were first pointed out by Costello
et al. [12] in the setting of SIDH when using modulus of the form 2x · 3y − 1
(referred to as “SIDH-friendly” primes) are exploited by the SIDH library [13].

In CHES’18, Seo et al. suggested the variant of Hybrid-Scanning (HS) for
“SIDH-friendly” Montgomery reduction on ARM Cortex-A15 [28]. Similar to
OC method, the HS method also changes the operand pointer when the row is
changed. By using the register utilization described in Section 2.2, we increase
the parameter d by 1 (3 → 4. Moreover, the initial block is also optimized

10 Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

C[0]C[14]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

2

C[0]C[14]

Init

1

Init

1

2

C[0]C[14]

1

2

3
4

5

Q[0]M[7]

Q[0]M[15]

Q[15]M[15]

Q[15]M[7]

T[7]T[22]T[30]

T[7]T[30]

1

2

3

4

1

Init

1-F

1-R
1-L

1-B

Init

1
I-FI-B

1

2

4

3

5

1-F

1-M
1-B

1

2-F

2-M
2-B

2

3-F

3-M
3-B

3

4-F

4-M
4-B

4

Fig. 4: 503-bit “SIDH-friendly” Montgomery reduction at the word-level, where d is 4
on ARM Cortex-M4, 1
→ 3
: order of rows; F
: middle part;
→ 2
→ 4
: front part; M
B
: back part; where M , R, T , and Q are modulus, Montgomery radix, intermediate
results, and quotient (Q ← T · M 0 mod R).

to avoid explicit register initialization and the MAC routine is implemented
in the pipeline-friendly approach. Compared with integer multiplication, the
Montgomery reduction requires fewer number of registers to be reserved. Since
the intermediate result pointer and operand Q pointer are identical value (i.e.
stack), we only need to maintain one address pointer to access both values.
Furthermore, the modulus for SIKE (i.e. operand M ; SIKEp434, SIKEp503,
and SIKEp751) is a static value. As a result, instead of obtaining values from
memory, we assign the direct values to the registers. This step can be performed
with the two instructions, such as MOVW and MOVT. The detailed 32-bit value
assignment (e.g. 0x87654321) to register R1 is given as follows:

. . .
MOVW R1, #0x4321 //R1 = #0x4321
MOVT R1, #0x8765 //R1 = #0x8765 � 16 | R1
. . .

In Figure 4, the 503-bit “SIDH-friendly” Montgomery reduction on ARM
Cortex-M4 microcontroller is described. The Montgomery reduction starts from
row 1, 2, 3, to 4.

In the front of row 1 (i.e. 1-F), the operand Q is loaded from memory and
the operand M is directly assigned using constant value. The multiplication
accumulates the intermediate results from memory using the operand Q pointer
and stored them into the same memory address. In the middle of row 1 (i.e. 1-M),
the operand Q is loaded and the intermediate results are also loaded and stored,
sequentially. In the back of row 1 (i.e. 1-B), the remaining partial products are
computed. Furthermore, the intermediate carry values are stored into stack and
used in the following rows.

11 SIKE Round 2 Speed Record on Embedded Processors

Using the above techniques, we are able to reduce the number of row by 1
(5 → 4), 2 (6 → 4), and 2 (8 → 6) for 448-bit, 512-bit, and 768-bit, respectively,
compared to original implementation of HS based Montgomery reduction.

2.5 Performance Evaluation

In this section, we present the performance evaluation of our proposed SIDH/SIKE
implementations on 32-bit ARM Cortex-M4 microcontrollers. We implemented
highly-optimized arithmetic, targeting SIKE round 2 primes adapting our opti-
mized techniques for multiplication, squaring, reduction, and addition/subtraction.
We integrate our arithmetic libraries to the SIKE round 2 reference implementa-
tion [5] to evaluate the feasibility of adopting this scheme on low-end Cortex-M4
microcontrollers.

All the arithmetic is implemented in ARM assembly and the libraries are
3 compiled with GCC with optimization flag set to -O3.

Table 3 and 4 present the comparison of our proposed library with highly
optimized implementations in the literature over different security levels. The
optimized C implementation timings by Costello et al. [13] and the reference C
implementation of SIKE [5] illustrate the importance of target-specific implemen-
tations of SIDH/SIKE low-end microcontrollers such as 32-bit ARM Cortex-M4.
In particular, compared to optimized C Comba based implementation in SIDH
v3.0, the proposed modular multiplication for 503-bit and 751-bit provide 19.05x
and 20.10x improvement, respectively.

The significant achieved performance improvement in this work is the result
of our highly-optimized arithmetic library. Specifically, our tailored multiplica-
tion minimizes pipeline stalls on ARM Cortex-M4 3-stage pipeline, resulting in
remarkable timing improvement compared to previous works.

Moreover, the proposed implementation achieved 362 and 977 million clock
cycles for total computation of SIDHp503 and SIDHp751, respectively. The re-
sults are improved by 10.51x and 12.97x for SIDHp503 and SIDHp751, respec-
tively. In comparison with the most relevant work, our proposed modular mul-
tiplication and SIDHp751 outperforms the optimized implementation in [23] by
2.75x and 4.35x, respectively. The implementations of SIKEp434, SIKEp503, and
SIKEp751 also show better performance than previous works4. In particularly,
the entire key encapsulation at NIST security level 1 takes about 252 million
clock cycles (i.e. 1.5 seconds @168MHz)

Compared with other NIST PQC round 2 schemes, the SIKE protocol shows
relatively slower execution time but the SIKE protocols show the most com-
petitive memory utilization for encapsulation and decapsulation. Furthermore,
small key size of SIKE ensures the lower energy consumption for key transmission
(through wireless network) than other schemes. The low-energy consumption is
the most critical requirement for low-end (battery-powered) microcontrollers.

3 Our library will be publicly available in the near future.
4 SIKEp434 requires more memory than SIKEp503 since SIKEp434 allocates more
temporal storage than SIKEp503 in Fermat based inversion.

12 Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh

Table 3: Comparison of SIDHp434, SIDHp503, and SIDHp751 protocols on the ARM
Cortex-M4 microcontrollers. Timings are reported in terms of clock cycles.

Implementation Language
Timings [cc] Timings [cc × 106]

Fp add Fp sub Fp mul Fp sqr Alice R1 Bob R1 Alice R2 Bob R2 Total

SIDHp434

This work ASM 254 208 1,110 981 65 74 54 62 255

SIDHp503

SIDH v3.0 [13] C 1,078 740 25,399 – 986 1,086 812 924 3,808

This work ASM 275 223 1,333 1,139 95 104 76 87 362

SIDHp751

SIDH v3.0 [13] C 1,579 1,092 55,178 – 3,246 3,651 2,669 3,112 12,678

Koppermann et al. [23] ASM 559 419 7,573 – 1,025 1,148 967 1,112 4,252

This work ASM 388 284 2,744 2,242 252 284 205 236 977

Table 4: Comparison of SIKEp434, SIKEp503, and SIKEp751 protocols on the ARM
Cortex-M4 microcontrollers. Timings are reported in terms of clock cycles. Kopper-
mann et al. [23] does not provide results on SIKE implementations.

Implementation Language
Timings [cc] Timings [cc × 106] Memory [bytes]

Fp add Fp sub Fp mul Fp sqr KeyGen Encaps Decaps Total KeyGen Encaps Decaps

SIKEp434

This work ASM 254 208 1,110 981 74 122 130 326 6,580 6,916 7,260

SIKEp503

SIDH v3.0 [13] C 1,078 740 25,399 – 1,086 1,799 1,912 4,797 – – –

This work ASM 275 223 1,333 1,139 104 172 183 459 6,204 6,588 6,974

SIKEp751

SIDH v3.0 [13] C 1,579 1,092 55,178 – 3,651 5,918 6,359 15,928 – – –

This work ASM 388 284 2,744 2,242 282 455 491 1,228 11,116 11,260 11,852

3 SIKE Round 2 on ARMv8 Cortex-A

3.1 ARMv8 Cortex-A Architecture

ARMv8 Cortex-A, or simply ARMv8, is the latest generation of ARM architec-
tures targeted at the “application” profile. It includes the typical 32-bit archi-
tecture, called “AArch32”, and advanced 64-bit architecture named “AArch64”
with its associated instruction set “A64” [3]. AArch32 preserves backwards com-
patibility with ARMv7 and supports the so-called “A32” and “T2” instructions
sets, which correspond to the traditional 32-bit and Thumb instruction sets,
respectively. AArch64 comes equipped with 31 general purpose 64-bit registers
(i.e. X0∼X30) and one zero register (i.e. XZR), and an instruction set supporting
32-bit and 64-bit operations. The significant register expansion means that with
AArch64 the maximum register capacity is expanded to 1,984 bits (i.e. 31 × 64,
a 4x increase with respect to ARMv7.).

ARMv8 processors started to dominate the smartphone market soon after
their first release in 2011, and nowadays they are widely used in various high-end
smartphones (e.g. iPhone, Huawei Mate, and Samsung Galaxy series). Since this
architecture is used primarily in embedded systems and smartphones, efficient
and compact implementations are of special interest.

13 SIKE Round 2 Speed Record on Embedded Processors

ARMv8 processor supports powerful 64-bit wise unsigned integer multiplica-
tion instructions. Our implementation of modular multiplication uses the AArch64
architecture and makes extensive use of the following multiply instructions:

– MUL (unsigned multiplication, low part):
MUL X0, X1, X2 computes X0 ← (X1 × X2) mod 264 .

– UMULH (unsigned multiplication, high part):
UMULH X0, X1, X2 computes X0 ← (X1 × X2)/264 .

The two instructions above are required to compute a full 64-bit multiplica-
tion of the form 128-bit ← 64×64-bit, namely, the MUL instruction computes the
lower 64-bit half of the product while UMULH computes the higher 64-bit half.

For the addition and subtraction operations, ADDS and SUBS instructions
ensure 64-bit wise results, respectively. The detailed descriptions are as follows:

– ADDS (unsigned addition):
ADDS X0, X1, X2 computes {CARRY,X0} ← (X1 + X2).

– SUB (unsigned subtraction):
SUBS X0, X1, X2 computes {BORROW,X0} ← (X1 − X2).

3.2 Multiprecision Multiplication

There is a number of works in the literature that study the ARMv8 instructions
to implement multi-precision multiplication or the full Montgomery multiplica-
tion for “SIDH friendly” modulus [19, 18, 29]. In [18], Jalali et al. implemented
751-bit and 964-bit finite field multiplication. They utilized the Comba method
(i.e. column-wise multiplication) for both cases [11]. In particular, they used
2-level Karatsuba for 964-bit finite field multiplication, which shows 23.9% per-
formance enhancements than conventional Comba method. In [29], Seo et al.
optimized the 503-bit finite field multiplication for SIKEp503. They also used
the Comba method with 2-level Karatsuba method to enhance the performance
of multiplication. Furthermore, they optimized the MAC (Multiplication ACcu-
mulation) routines to avoid the pipeline stalls.

Recently, two novel SIKE protocols (i.e. SIKEp434 and SIKEp610) for NIST
Post Quantum Cryptography competition were suggested, which meet NIST se-
curity level 1 and 3, respectively [4]. However, previous works do not show the
optimized results for both protocols. In this paper, we show the first practi-
cal implementations of SIKEp434 and SIKEp610 protocols on 64-bit ARMv8-A
processors.

In previous works, they used the Comba method (i.e. column-wise method)
to improve the multi-precision multiplication. The Comba method performs the
partial products in column-wise, which ensures small number of registers for
maintaining the intermediate results. In Figure 5, the part of Multiplication
ACculmuation (MAC) routine in column-wise method for 64-bit ARMv8 pro-
cessors is described. The example performs the three partial products (A[i]×B[j],
A[i +1] × B[j − 1], and A[i +2] × B[j − 2]) and accumulates them to the interme-
diate results. In each MAC routine, two multiplication (MUL LOW and MUL HIGH)

14 Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh

and three addition operations (ACC0, ACC1, and ACC2) are required. For one
limb multiplication, we need three addition operations. For that reason, n-limb
multiplication requires 3 × n2 addition operations.

LOW (A[i] X B[j])

HIGH (A[i] X B[j])

LOW (A[i+1] X B[j-1)

HIGH (A[i+1] X B[j-1])

ACCUMULTAION0

ACCUMULTAION1

ACCUMULTAION2

ACCUMULTAION0

ACCUMULTAION1

ACCUMULTAION2

LOW (A[i+2] X B[j-2])

HIGH (A[i+2] X B[j-2])

ACCUMULTAION0

ACCUMULTAION1

ACCUMULTAION2

C
o
m

p
u
ta

tio
n
 o

rd
e
r

Destination offset

Fig. 5: Part of column-wise multiplication for ARMv8

In this work, we target the relatively shorter modulus (i.e. 434-bit) than pre-
vious works (i.e. 503-bit or 751-bit). We decide to use the row-wise multiplication,
which requires 2n + 2 registers (n + 1 for operands and n + 1 for intermediate
results), where n, m, and w are bm/wc, operand length, and word size, respec-
tively. Under 64-bit processor setting, the n is set to 7 for 434-bit (b434/64c).
Considering that ARMv8 supports 31 64-bit registers, the required number of
registers for 434-bit can be retained in the registers. In Figure 6, the part of MAC
routine in row-wise method for 64-bit ARMv8 processors is described. The ex-
ample performs the three partial products (A[i] × B[j], A[i] × B[j + 1], and
A[i] × B[j + 2]) and accumulates them to the intermediate results. The number
of addition for three partial products in Figure 6 are 8 (i.e. 2 × (n +1) where n is
3.). For the n-limb multiplication, it requires 2 × n × (n + 1) addition operations.
The comparison of multiplication methods in terms of the number of addition
operations depending on the number of limb are given in Table 5. Compared
with the column-wise method (i.e. product-scanning), the row-wise method (i.e.
operand-scanning) requires less number of addition operations for accumula-
tion routines. For the 7-limb case (i.e. 434-bit), the row-wise method reduces

15 SIKE Round 2 Speed Record on Embedded Processors

Table 5: Comparison of multiplication methods, in terms of the number of addition
operations depending on the number of limb.

Method 3 4 5 6 7

Operand Scanning 24 40 60 84 112
Product Scanning 27 48 75 108 147

the number of addition operations by 35 times than the column-wise method.
The multiplication is performed in original row-wise multiplication rather than
row-wise multiplication with Karatsuba method. The Karatsuba method is also
working for 7-limb case but it generates a number of sub-routines to perform and
store the intermediate results, which requires additional operations and memory
accesses [27].

For the 610-bit multiplication, the operands A = (A[9], . . . , A[0]) and B =
(B[9], . . . , B[0]) need 20 64-bit registers. Except the operands, we also need reg-
isters for intermediate results and temporal storage. Due to the limited number
of registers, we only maintain the half number of operands in the registers and
load the remaining operands on demand.

We first compute the lower 320-bit multiplication RL ← A[4 ∼ 0] · B[4 ∼ 0])
using the row-wise method that requires 25 MUL, 25 UMULH and 52 addition in-
structions for accumulating the partial products. Second, we compute the higher
310-bit multiplication RH ← A[9 ∼ 5]·B[9 ∼ 5], similarly. Third, we compute the
subtractions and absolute values |A[4 ∼ 0] − A[9 ∼ 5]| and |B[4 ∼ 0] − B[9 ∼ 5]|
and proceed to the last 310-bit multiplication RM ← |A[4 ∼ 0]−A[9 ∼ 5]|·|B[4 ∼
0] − B[9 ∼ 5]|. Finally, we obtain the result by performing the accumulation step

2610 +(RL +RH −RM) 2310 RH · · +RL. Since the multiplication uses all available
registers, 12 callee-saved registers (X19 ∼ X30) are stored into the stack. The
multiplication is also designed to reduce the pipeline stalls. The multiplication
and addition/subtraction operations use different instruction group. They can
hide each others costs. Based on the above observation, we engineer a multi-
precision multiplication to hide the addition costs into the multiplication. At
the lowest level, we implement multi-precision multiplication using the row-wise
method based on the following multiplication/addition instruction sequence:

. . .
MUL X7, X6, X2
ADCS X18, X18, X13
MUL X8, X6, X3
ADCS X19, X19, X14
MUL X9, X6, X4
ADCS X20, X20, X15
MUL X10, X6, X5
ADCS X21, X21, X16
. . .

16 Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh

LOW (A[i] X B[j])

HIGH (A[i] X B[j])

LOW (A[i] X B[j+1])

LOW (A[i] X B[j+2])

HIGH (A[i] X B[j+1])

HIGH (A[i] X B[j+2])

ACCUMULTAION0

ACCUMULTAION1

ACCUMULTAION2

ACCUMULTAION3

ACCUMULTAION0

ACCUMULTAION1

ACCUMULTAION2

ACCUMULTAION3

C
o
m

p
u
ta

tio
n
 o

rd
e
r

Destination offset

Fig. 6: Part of row-wise multiplication for ARMv8

We ensure that the destination of MUL instruction is not used for the source
of following ADCS instructions. This approach avoids the pipeline stalls. Second,
MUL and ADCS instructions are performed one by one to hide the each costs.

3.3 Modular Reduction

In this section, we adapt the techniques described in previous sections to imple-
ment modular multiplication for the supersingular isogeny-based protocols SIDH
and SIKE. Specifically, we target the parameter sets based on the primes p434
and p610 [4].

Multi-precision modular multiplication is the most expensive operation for
the implementation of SIKE [20, 12]. In particular, Montgomery multiplication
for SIKE can be efficiently exploited and further simplified by taking advan-
tage of so-called “Montgomery-friendly” modulus. The advantage of using Mont-
gomery multiplication for “SIDH-friendly” primes was recently confirmed by Bos
and Friedberger [7], who studied and compared different approaches, including
Barrett reduction. Recent works by Seo et al also utilized the Montgomery mul-
tiplication for SIKEp503 protocols [29].

Based on the observation above, we choose the Montgomery multiplication
to implement SIDH-friendly modular arithmetic for SIKEp434 and SIKEp610
protocols. The approach reduces almost half of partial products since the lower
part is set to 0. In order to reduce the memory accesses, we keep as many results
as possible in the registers. Since the Montgomery multiplication performs the
partial products with modulus and quotient (Quotient is intermediate results

17 SIKE Round 2 Speed Record on Embedded Processors

multiplied by constant m0), we maintained all quotients in the registers and
used them directly. The technique reduces the 2 × (n + 1) number of memory
accesses for n + 1 load and n + 1 store operations.

3.4 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms for
64-bit ARMv8-A processors. All our implementations were written in assembly
language and complied with optimization level -O3.

We implemented the multi-precision multiplication algorithm described in
Section 3.2 and Montgomery reduction in Section 3.3. We integrated our imple-
mentation of the Montgomery multiplication for ARMv8-A into the SIKE round
2 library [4].

Table 6 summarizes the results of different software implementations of the
SIKEp434 and SIKEp610 arithmetic on ARMv8-A processor: a 1.536GHz ARM
Cortex-A53 processor. Since this is first work for SIKEp434 and SIKEp610 on
ARMv8-A processors, we compare the results with the SIKE round 2 reference
code. The unoptimized reference implementation is written in C using the SIKE
round 2 library [4]. In this case, the proposed arithmetic implementations show
much higher performance than reference work. In particular, finite field multipli-
cation and inversion operations show performance enhancements by 4.96x and
4.98x, respectively.

Table 7 summarizes the results of different software implementations of the
SIKEp434 and SIKEp610 protocols on ARMv8-A processor. Compared with
reference work, the proposed implementation is between 3.83 and 3.42 times
faster for the computation of the SIKE full protocols. Considering that the target
processor is 1.536 GHZ, the SIKEp434 and SIKEp610 requires only 0.065 and
0.238 seconds, respectively.

Compared with the other security levels, the performance depends on the
length of modulus. The SIKEp434 shows the highest performance and the SIKEp751
shows the lowest performance as we expected.

Table 6: Comparison of implementations of the SIKEp434 and SIKEp610 arithmetic on
ARMv8 Cortex-A53 based processors. Timings are reported in terms of clock cycles.

Implementation Language Protocol
Timings [cc]

Fp add Fp sub Fp mul Fp inv

SIKE R2 [4] C 172 129 3,110 1,648,372

This work ASM
SIKEp434

71 63 691 380,711

SIKE R2 [4] C 257 187 6,599 4,800,694

This work ASM
SIKEp610

100 91 1,329 963,064

18 Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh

Table 7: Comparison of implementations of the SIKE protocols on ARMv8 Cortex-A53
based processors. Timings are reported in terms of clock cycles.

Implementation Language Protocol
Timings [cc] Timings [cc × 106]

Fp mul KeyGen Encaps Decaps Total

SIKE R2 [4] C
SIKEp434

3,110 114 186 199 499

This work ASM 691 30 49 52 130

Seo et al. [29] ASM SIKEp503 849 38 63 67 168

SIKE R2 [4] C
SIKEp610

6,599 344 634 615 1,593

This work ASM 1,329 99 183 183 465

Seo et al. [29] ASM SIKEp751 2,450 164 265 284 713

4 Conclusion

In this work, we presented a highly optimized implementation of SIDH/SIKE
on low-end 32-bit ARM Cortex-M4 microcontrollers and high-end 64-bit ARM
Cortex-A53 embedded processors. We proposed a new set of implementation
techniques, taking advantage of Cortex-M4 and Cortex-A53 capabilities. In par-
ticular, we proposed a new implementation method for finite field arithmetic
implementation.

We integrated the proposed modular arithmetic implementations into SIDH/SIKE
reference implementations. Our library significantly outperforms the previous
state-of-the-art implementations of integer arithmetic on our target platform,
providing 4.35x faster results compared to the only available optimized imple-
mentation of SIDHp751 on Cortex-M4 in the literature. Using our proposed tech-
niques and optimizations, the entire key encapsulation mechanism over SIKEp434
runs in 1.5 seconds on a 168MHz ARM Cortex-M4 microcontroller which shows
the feasibility of using post-quantum isogeny-based cryptography on low-end
microcontrollers.

The optimized implementation on a 64-bit ARMv8 Cortex-A53 processors,
which push further the performance of post-quantum supersingular isogeny-
based protocols, are 3.42x faster than the previously implementations of SIDHp610
on the same processors. Furthermore, we integrated our fast modular arithmetic
implementations, compact prime SIDHp434, and optimal strategy for isogeny
computations into Microsoft’s SIDH library. A 128-bit full key-exchange execu-
tion over optimal prime SIDHp434 is performed in about 0.065 seconds on a
1.536GHz ARMv8 Cortex-A53 processors.

We hope the proposed implementation techniques motivate more engineering
efforts on the optimized implementation of SIKE mechanism on different embed-
ded platforms. We plan to adopt the same strategy in designing efficient software
libraries, targeting different families of embedded processors in the future.

19 SIKE Round 2 Speed Record on Embedded Processors

5 Acknowledgement

This work was supported by Institute for Information communications Technol-
ogy Planning Evaluation (IITP) grant funded by the Korea government(MSIT)
(<Q|Crypton>, No.2019-0-00033, Study on Quantum Security Evaluation of
Cryptography based on Computational Quantum Complexity).

References

1. G. Adj, D. Cervantes-Vázquez, J.-J. Chi-Domı́nguez, A. Menezes, and
F. Rodŕıguez-Henŕıquez. On the cost of computing isogenies between supersingu-
lar elliptic curves. Technical report, Cryptology ePrint Archive, Report 2018/313,
2018. https://eprint.iacr.org, 2018.

2. ARM Holdings. Q1 2017 roadshow slides. https://www.arm.com/company/-/
media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_
SB_Q1_2017_Roadshow_Slides_Final.pdf, 2017.

3. ARM Limited. ARM architecture reference manual ARMv8, for ARMv8-A archi-
tecture profile. https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_
arm.pdf, 2013–2017.

4. R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess, A. Jalali, D. Jao,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, G. Pereira, J. Renes, V. Soukharev,
and D. Urbanik. Supersingular Isogeny Key Encapsulation – Submission to
the NIST’s post-quantum cryptography standardization process, round 2, 2019.
Available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions/SIKE.zip.

5. R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess, A. Jalali, D. Jao,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, G. Pereira, J. Renes, V. Soukharev,
and D. Urbanik. Supersingular Isogeny Key Encapsulation – Submission to
the NIST’s post-quantum cryptography standardization process, round 2, 2019.
Available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions/SIKE.zip.

6. R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess, A. Jalali,
D. Jao, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes,
V. Soukharev, and D. Urbanik. Supersingular Isogeny Key Encapsula-
tion – Submission to the NIST’s post-quantum cryptography standardization
process, 2017. Available at https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip.

7. J. Bos and S. Friedberger. Fast arithmetic modulo 2x py ± 1. In IEEE Symposium
on Computer Arithmetic (ARITH’17), pages 148–155. IEEE, 2017.

8. J. Bos and S. Friedberger. Arithmetic considerations for isogeny based cryptogra-
phy. IEEE Transactions on Computers, 2018.

9. D. X. Charles, K. E. Lauter, and E. Z. Goren. Cryptographic hash functions from
expander graphs. J. Cryptology, 22(1):93–113, 2009.

10. L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and
D. Smith-Tone. Report on post-quantum cryptography. US Department of Com-
merce, National Institute of Standards and Technology, 2016.

11. P. G. Comba. Exponentiation cryptosystems on the IBM PC. IBM systems journal,
29(4):526–538, 1990.

https://csrc.nist.gov/CSRC/media/Projects
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8
https://www.arm.com/company
http:https://eprint.iacr.org

20 Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh

12. C. Costello, P. Longa, and M. Naehrig. Efficient algorithms for supersingular
isogeny Diffie-Hellman. In M. Robshaw and J. Katz, editors, Advances in Cryptol-
ogy - CRYPTO 2016, volume 9814 of Lecture Notes in Computer Science, pages
572–601. Springer, 2016.

13. C. Costello, P. Longa, and M. Naehrig. SIDH Library. https://github.com/
Microsoft/PQCrypto-SIDH, 2016–2018.

14. A. Faz-Hernández, J. López, E. Ochoa-Jiménez, and F. Rodŕıguez-Henŕıquez. A
faster software implementation of the supersingular isogeny diffie-hellman key ex-
change protocol. IEEE Transactions on Computers, 67(11):1622–1636, 2018.

15. H. Fujii and D. F. Aranha. Curve25519 for the Cortex-M4 and beyond. Progress
in Cryptology-LATINCRYPT, 35:36–37, 2017.

16. N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing ellip-
tic curve cryptography and RSA on 8-bit CPUs. In International workshop on
cryptographic hardware and embedded systems, pages 119–132. Springer, 2004.

17. M. Hutter and E. Wenger. Fast multi-precision multiplication for public-key cryp-
tography on embedded microprocessors. In International Workshop on Crypto-
graphic Hardware and Embedded Systems, pages 459–474. Springer, 2011.

18. A. Jalali, R. Azarderakhsh, M. M. Kermani, and D. Jao. Supersingular isogeny
Diffie-Hellman key exchange on 64-bit ARM. IEEE Transactions on Dependable
and Secure Computing, 2017.

19. A. Jalali, R. Azarderakhsh, and M. Mozaffari-Kermani. Efficient post-quantum
undeniable signature on 64-bit ARM. In International Conference on Selected
Areas in Cryptography, pages 281–298. Springer, 2017.

20. D. Jao and L. D. Feo. Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. In B. Yang, editor, Post-Quantum Cryptography
(PQCrypto 2011), volume 7071 of Lecture Notes in Computer Science, pages 19–34.
Springer, 2011.

21. M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen. PQM4: Post-
quantum crypto library for the ARM Cortex-M4. https://github.com/mupq/
pqm4.

22. S. Kim, K. Yoon, J. Kwon, S. Hong, and Y.-H. Park. Efficient isogeny computations
on twisted Edwards curves. Security and Communication Networks, 2018, 2018.

23. P. Koppermann, E. Pop, J. Heyszl, and G. Sigl. 18 seconds to key exchange: Lim-
itations of supersingular isogeny diffie-hellman on embedded devices. Cryptology
ePrint Archive, Report 2018/932, 2018. https://eprint.iacr.org/2018/932.

24. B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani. Fast hardware architec-
tures for supersingular isogeny Diffie-Hellman key exchange on FPGA. In Inter-
national Conference in Cryptology in India, pages 191–206. Springer, 2016.

25. B. Koziel, A. Jalali, R. Azarderakhsh, D. Jao, and M. Mozaffari-Kermani. NEON-
SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key ex-
change protocol on ARM. In International Conference on Cryptology and Network
Security (CANS 2016), pages 88–103. Springer, 2016.

26. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, 1985.

27. P. L. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE
Transactions on Computers, 54(3):362–369, 2005.

28. H. Seo, Z. Liu, P. Longa, and Z. Hu. SIDH on ARM: faster modular multiplications
for faster post-quantum supersingular isogeny key exchange. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 1–20, 2018.

https://eprint.iacr.org/2018/932
https://github.com/mupq
http:https://github.com

21 SIKE Round 2 Speed Record on Embedded Processors

29. H. Seo, Z. Liu, P. Longa, and Z. Hu. SIDH on ARM: faster modular multiplications
for faster post-quantum supersingular isogeny key exchange. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 1–20, 2018.

30. The National Institute of Standards and Technology (NIST). Post-quantum
cryptography standardization, 2017–2018. https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization.

https://csrc.nist.gov/projects

