
National Institute of
Standards and Technology

Computer Security Division
Information Technology Laboratory

A Secure Toolchain Competition
June 16, 2016

Lee Badger
Christopher Johnson
Computer Security Division

NIST

Note: Any mention of a vendor or product is not
an endorsement or recommendation.

Credit: The proposed competition is based on one of the ideas developed during the Designing a Secure Systems Engineering
Competition (DESSEC) workshop run by NSF in 2010: Secure Development Tool Chain.

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

2

Lee Badger
Christopher Johnson
Murugiah Souppaya

Larry Keys
Michael Bartock
Jeffrey Cichonski

NIST

G2, Inc.

GWU/LeMoyne
College

Daniel Shiplett
Scott Wilson
Shawn Webb

Roger Chapple
Sean McGinnis

Carl Landwehr

Based on an idea from Designing a Secure Systems
Engineering Competition (DESSEC) workshop run by
NSF in 2010: Secure Development Tool Chain

Provenance

Team and Idea Provenance

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Objective: Secure Software Through
Development Toolchain Competitions

3

Participant
Winner

Problem Difficulty
complexity

time allowed()

Competition
1

Competition
2

∞

0

fla
w

s

0

fla
w

s

∞
Competition

3

0

fla
w

s

∞
Competition

4

0

fla
w

s

∞
Competition

5

0

fla
w

s

∞

More Secure
Software

. . .

Reproducible results, technology improvements, public data

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

0

2000

4000

6000

8000

2006 2007 2008 2009 2010 2011 2012 2013

D
ef

ec
ts

Coverity Scan: Defects
Identified

The Problem

4

• Vulnerabilities are routinely produced by millions of software developers.
• The resulting attacks undermine US competitiveness and security.

Credit: nvd.nist.gov, www.exploit-db.com, www.coverity.com, McAfee Labs, 2014.

3.5M
SLOC

8.6M
SLOC

McAfee Labs: New Malware

0
1000
2000
3000
4000
5000
6000

Ex
pl

oi
ts

ExploitDB

0
2000
4000
6000
8000

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

Vu
ln

er
ab

ili
tie

s

National Vulnerability
Database

M
al

w
ar

e

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Opportunities for Vulnerability
Suppression/Mitigation

5

Design and
implementation Deployment Operation &

Maintenance

toolchains

developers

tools

administrators

tools

operators

(simplified)

Software
Lifecycle
Phases

Tools

People
3 million in US

(NICE securely provision
IEEE building code for building code)

Our
Focus

• Security-focused toolchain enhancements could have large downstream benefits.
• Developer training is also important, but our focus is on the tools.

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

What is a Toolchain?

6

toolchain A collection of software or hardware mechanisms that
a software developer may use to produce a software
entity that can execute on a specific platform.

Our working definition.
Wikipedia has one too.

Build environments

Compilers

Languages

Interpreters

Frameworks

Libraries

Linkers

Integrated development environments

Version control systems

Static analyzers

Testing tools

Debuggers

Editors

Modeling tools

Media authoring tools

Code generation tools

Reverse engineering

Some kinds of mechanisms:

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Some Toolchain Platforms

7

Android iOS

Web
Browser
(e.g., ajax)

MS
Windows
Version X

OS X Linux

Java
Virtual

Machines

MS
.Net

Adobe
Flash

Blackberry

Solaris

and many more …

Arduino

• Improvements could reduce vulnerability production.
• But, how can we incentivize security improvements?

Embeded
App X

Loadable
Modules

OS
command

line

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

8

An Iterative Competition to Foster Improved
Software Toolchains

Competition
Announcement

Game Day

Automated Scoring Day

Award Day

Time to prepare
(Improve Tools!)

~6 months

4-person
teams

If objective scoring threshold achieved:
award prize $$$ to earliest winning submission

Formulate lessons learned
(NIST publication)

By Pearson Scott Foresman [Public domain], via Wikimedia Commons, gnome icon artists

. . .
start!

stop!

Work
Work
Work
Work

Work
Work
Work
Work

Work
Work
Work
Work

Programming
assignment

Solutions

Competition database

Test a Solution Scores

Industry
Tool builders

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Goal: Identify and Measure the Most Effective
Kinds of Development Tools

• To discover what works well, allow nearly all possibilities:
– Any programming language
– Any operating system (except in cell phones)
– Any development methodology
– Any test/analysis approach or tools
– Any building-block components

• E.g., existing frameworks, libraries, custom utilities

9

Testing
InfrastructureWindows

Participant’s Solution

Linux

maven

OS X

JVM

Formal Methods

Python

Model Driven Development

go
C++

Java

Legacy frameworks lisp

…
narrow

interface

(Implies large submission packages)

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Goal: Maximize Objectivity
• Mechanical scoring

– All tests are formulated before game day
– All solutions subjected to the same tests

• Public bulletin board for questions
• Scoring infrastructure source code published after the

testing
• Goal: test results will be reproducible

– (better than repeatable)
• Requirement: all test infrastructure software components

must be free and available

10

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

A Challenge Problem (CP)
• Developed (but not disclosed) before Game Day
• Comprised of 3 parts:

1. Functional Specification of the program to develop.
A white paper (<= 20 pages) with diagrams, in English (including major
application states, protocol and data format descriptions).

2. Required Security Policy.
Confidentiality and integrity requirements, function availability requirements,
authentication and access control requirements, in English. Rules of
Engagement specifying permitted/prohibited actions.

3. Problem-specific Test Suite (revealed after Game Day)
20 fully-automated application-specific pass/fail functional tests.
20 fully-automated application-specific pass/fail security tests.
Fuzz tester configured for the required external interfaces/features.

11

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Initial Challenge Problem Types
• Command Line Interface (CLI)

– Standalone program, launched from an interactive session
– Can receive file, network, and user keyboard input
– Perform arbitrary functions; generate any data or protocol
– Few restrictions on implementing technologies

• Mobile
– Android application, launched from Android home screen
– Can receive file, network, Android user interface input
– Perform arbitrary functions; generate any data or protocol
– Constrained to Android package format (.apk)

• Web
– Web application, listens to port 80
– Can receive file, network, browser user interface input
– Perform arbitrary functions; generate any data or protocol
– Constrained to support HTML5 web browsers

12

Web figure credit: GPL license from The GNOME Web Browser Developers, wikimedia commons.

(2)

(3)

(3)

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Command-Line Interface (CLI) CPs
• Participant provides:

– Deployable virtual machine (VM) image
• SSH Daemon with user “testuser” and password “TestPass1!1”
• Program “do-it” on the testuser’s PATH
• Any in-VM services needed by do-it already running

• Test Infrastructure provides:
– Configuration files
– Network-accessible hosts and protocol definition
– Behavioral specifications (to implement)
– Sample terminal logs
– Security properties (to provide)
– Rules of Engagement

• Actions that a participant must not take
• Actions that the test infrastructure will not take

• Known-answer and fuzz tests are run and scored automatically

13

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Mobile App Challenge Problems

• Participant provides:
– An Android Package file (.apk)
– Specified SDK level

• Test Infrastructure provides:

– GUI components, layout, menu XML files (required)
– Connected devices
– Network-accessible hosts and protocol definitions
– Behavioral specifications (to implement)
– Security properties (to provide)
– Rules of Engagement

• Actions that a participant must not take
• Actions that the test infrastructure will not take

• Known-answer and fuzz tests are run and scored automatically

14

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Web App Challenge Problems
• Participant provides:

– A Deployable virtual machine (VM) image
– The web app must automatically launch when the VM boots, and host on port 80.
– The web app must support HTML5 web clients, including Chrome and Firefox.

• Test Infrastructure provides:
– Image and icon files and HTML templates including ID attributes.
– Network-accessible hosts and protocol definitions
– Behavioral specifications (to implement)
– Wire frame mockups of the intended interface
– Security properties (to provide)
– Rules of Engagement

• Actions that a participant must not take.
• Actions that the test infrastructure will not take.

• Known-answer and fuzz tests are run and scored automatically

15

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Sample Mobile Challenge: News App

16

• Participants to create an Android-based mobile news
application

• 17-page informal specification

News server

REST / JSON
protocolUnauthenticated state

Authenticated state

Either state

Security Policy
Protected preferences
Responsiveness
Inter-user access control, etc.

Provided XML views
Account creation on server
Persistence; password masking

Attack Vectors
Malicious user GUI input
Malicious/invalid input from News server
Malicious/invalid input from other apps

Authentication timeout
File (story) saving, SD card or internal
Story sharing, story filtering
Toast message confirmations

Toast error messages

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Sample Mobile Challenge: News App

17

• XML UI files determine the layout of graphical elements
• Multiple storage locations for persistent data
• Server interaction

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

User Interface Behavior

18

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Testing a Mobile App

19

TCUI VM Jenkins VM
User-submit

Transmit APK

Via SSH, launch news server VM

Tell: clone the mobil-1-ping job clone the mobil-1-ping job

saved

Host OS

launch VM

Tell: run the ping job run the mobil-1-ping job

Tell: run the test job Run the test job
- checkout the src from gitlab
- compile (java) using maven
- start Android emulator

(uses Android plugin)
- copy /etc/host into the emulator
- invoke maven to run tests

(generates raw reports)

Via SSH, kill the news server VM kill the VM

Retrieve the raw report Read/send

Modify report for presentation;
generate scores

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Abstract Measurement Results

20

20 Pass/Fail
Functional Tests

20 Pass/Fail
Security Tests Fuzz testing

Submission
time

Reference
measurements

Pass join_table
Pass list_decks
Pass take_deck
Pass release_deck
Pass shuffle_deck
Pass start_play
Pass start_turn
Pass pop_deck
Pass take_card
Pass put_card
Pass show_hand
Pass show_table
Pass save_table
Pass multiple_players
Pass search_player
Pass search_deck
Fail remove_player
Pass multiple_decks
Pass max_players
Pass history

Pass authentication
Pass buffer_error
Pass code_injection
Fail format_string
Pass command_inject
Pass race_condition
Pass credential_fail
Pass input_validation
Pass numberic_error
Fail privilage_error
Pass path_traversal
Pass link_following
Pass info_leak
Pass access_control
Pass out_of_turn_play
Pass join_order_used
Pass invalid_deck_use
Fail deck_ownership
Pass card_visibility
Pass random_order

N cpu hours
C crashes
H hangs

<= 10 hours

(break ties)

Average ~2,600
SLOC for 8
exemplar
implementations
(not participant
submissions).

Excluding
libraries
and lib-generated
code.

McCabe
Cyclomatic
complexity

Halstead
complexity

CP-specific functional
tests (score displayed
is notional).

Indicators on the
complexity, or
difficulty of the CP.

Application-specific security tests, categorized when possible
using the MITRE Common Weaknesses and Vulnerabilities types.

Credit: http://cwe.mitre.org/data/slices/2000.html

Fuzz testing applied
uniformly across
submissions.

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Actual Measurement Results: Functional Tests

21

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Actual Measurement Results: Security Tests

22

Fuzz testing

Known-answer
testing

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Actual Measurement Results: Detailed View

23

Invalid
Input

Fuzzing

Cucumber
scenarios

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Testing Architecture for Dry Run

Credit: Pic by User:jpp44345 (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Testing mac book pro

Participant mac book pro

Core
Services
VM

VirtualBox

Core
Services
VM

VirtualBox

Tc-ui

gitlab

jenkinsartifactory Optional backend VMs

Submission
vm

Layer 3 switch

participant
participant

participant
participant

Internet

Note: NICs can be bottlenecks due to large submission size (2.5GB for VMs)

26

• Concurrent clients
• Protected scoring
• Mobility

Design Goals

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Virtualized Demo Architecture

Credit: Pic by User:jpp44345 (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

VirtualBox

Internet

TC-UI

Gitlab

Jenkins

Artifactory

Optional backend VMs

Submission
vm

• Injected /System/etc/hosts file for
Android
– No Internet dependency

• Stack of interpreters:
– Java bytecodes
– MIPS instructions (QEMU emulator)
– Guest virtual machine
– Intel OS X base

28

Client VM

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Dry Run Synopsis
• 8 tests
• 12 developers total
• Experience ranging from 2 years to 32 years
• Test1: no working submission made; networking issue
• Test2: incomplete submission; networking issues
• Test3: incomplete submission; networking issues worse
• Test4: incomplete submission; network functional
• Test5: submission did not pass tests
• Test6: no submission (one requirement judged too hard)
• Test7: more features; Jenkins job misconfiguration
• Test8: produced deliverable; test suite failure

26

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Lessons Learned

• It is important for teams to be warmed up.
– Teams should choose languages, frameworks ahead of time
– Teams should choose revision control systems ahead of time

• Prepared teams are a precondition for measuring
toolchain differences.

• Provide more context prior to the testing
– As much detail as possible without “spilling the beans”

• Provide revision control software/systems
• Provide a trial-run submission portal.
• Stress test the infrastructure prior to a competition.

27

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Status

28

Oct. 1 2014 Sep. 30 2015

Formulate 8 preliminary
Challenge Problems

Document 8 preliminary
Challenge Problems

Implement 8 solutions for
Challenge Problems
(includes test suites)

Dry Run competition
At NIST for the 8 challenge
Problems.
• Calibrate CP size/difficulty
• Confirm scoring approach.

Aug. 1 2016 Dec. 31 2016

✔

✔

✔

Preparation Phase

Redesign

✔

Redesign competition testing infrastructure

Debug Competition Infrastructure
Deliver Updated Documentation
Deliver Updated Source Code

In Progress
by G2

Jan. 1 2017 Sep. 30 2017

Iteration 1 Competition

Confirm participation of NSA, DHS, DARPA.

Choose venue for competition.

Procure contractor support for competition event.

Choose and refine first CP.

Perform steps of slide 8 (“an iterative competition...”)

Plan next iteration.

Dry Run competition (again).

Oct. 1 2015 Sep. 30 2016

Debugging and Documenting

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

Reminder: Objective of Competition

29

Participant
Winner

Problem Difficulty
CP complexity

time allowed()

Iteration 1 Iteration 2
∞

0

fla
w

s

0

fla
w

s

∞
Iteration 3

0

fla
w

s

∞
Iteration 4

0

fla
w

s

∞
Iteration 5

0

fla
w

s

∞

More Secure
Software

. . .

Reproducible results, technology improvements, public data

National Institute of
Standards and Technology

Information Technology Laboratory NIST
National Institute of

Standards and Technology

Computer Security Division
Information Technology Laboratory

30

Thank You

