
Assessing Quality of Policy Properties in

Verification of Access Control Policies

Evan Martin JeeHyun Hwang Tao Xie

Computer Science Department

North Carolina State University

Raleigh, NC

{eemartin, jhwang4, txie}@ncsu.edu

Vincent Hu

National Institute of Standards

and Technology

Gaithersburg, MD, USA

vincent.hu@nist.gov

Abstract

Access control policies are often specified in declarative

languages. In this paper, we propose a novel approach,

called mutation verification, to assess the quality of proper-

ties specified for a policy and, in doing so, the quality of the

verification itself. In our approach, given a policy and a set

of properties, we first mutate the policy to generate various

mutant policies, each with a single seeded fault. We then

verify whether the properties hold for each mutant policy. If

the properties still hold for a given mutant policy, then the

quality of these properties is determined to be insufficient

in guarding against the seeded fault, indicating that more

properties are needed to augment the existing set of proper-

ties to provide higher confidence of the policy correctness.

We have implemented Mutaver, a mutation verification tool

for XACML, and applied it to policies and properties from a

real-world software system.

1. Introduction

Access control is one of the most fundamental and

widely used security mechanisms for resources. It controls

which principals such as users or processes have access to

which resources in a system. A growing trend has emerged

toward writing access-control-policy specifications in stan-

dardized, declarative languages such as XACML [1] and

Ponder [6]. Implementing and maintaining these policies

are important and yet challenging tasks, especially as access

control policies become more complex and are used to man-

age a large amount of distributed and sensitive information.

Identifying discrepancies between policy specifications and

their intended function is crucial because correct implemen-

tation and enforcement of policies by applications are based

on the premise that the policy specifications are correct. As

a result, policy specifications must undergo rigorous verifi-

cation and validation to ensure that the policy specifications

truly encapsulate the desires of the policy authors.

Property verification [9, 11, 13, 14, 19, 24] consumes a

policy and a property, and determines whether the policy

satisfies the property. Policy verification, while useful, re-

quires the policy authors to write a property set, which can

be verified against the policy under verification to ensure its

correctness. With a property set of higher quality (covering

a larger portion of a policy’s behavior), the policy authors

are more likely to detect policy faults (if any) and increase

the confidence of its correctness.

In this paper, we propose a novel approach that assesses

the quality of properties for a policy based on mutation ver-

ification, a counterpart of mutation testing [7] in verifica-

tion. We have implemented our approach in a tool called

Mutaver. To the best of our knowledge, there is no previous

work to assess the quality of a property set and guide how

to write a property set. The results of our mutation veri-

fication approach can be immediately used to aid property

elicitation and serve as a general quality metric for a set of

properties that ultimately check for faults in the policy.

In our approach, we propose mutation verification as a

means to determine which properties in the given property

set interact with rules in a policy during policy verifica-

tion. In particular, given a policy, our approach automati-

cally seeds it with faults to produce various mutant policies,

each containing one fault. Then given a property set for this

policy, our approach conducts property verification on this

policy (called the original policy) and each mutant policy. If

the property set holds for the original policy but fails to hold

for the mutant policy, then the mutant is said to be killed by

the property set. The ratio of the number of killed mutants

to the total number of mutants serves as a metric to quantify

comprehensiveness of the elicited property set. By analyz-

ing the verification results, we can determine what rules, if

any, fail to interact with the given property set and thus help

guide property elicitation by targeting not-covered rules.



Different from previous research [17, 21] on policy mu-

tation testing, instead of assessing the quality of a request

set (by using a policy evaluation engine) in policy testing,

we assess the quality of a property set by using a policy

verification approach. A property set can effectively sum-

marize various complex behaviors of a policy. In practice,

a property is often intuitive and expressed in various ways

(implicitly or explicitly) for a policy. Furthermore, as the

behavior characterized by a property cannot be easily char-

acterized by one or multiple policy requests, we cannot as-

sess the property set with the previous approaches [17, 21]

on policy mutation testing.

This paper makes the following main contributions:

• We propose a novel approach for assessing the quality

of properties for a policy in policy verification.

• We implement the proposed approach with an auto-

matic tool that facilitates automated mutation verifica-

tion of access control policies written in XACML [1].

• We present a case study on an access control policy

from a real-world software system to demonstrate the

feasibility of this approach.

The rest of the paper is organized as follows. Section 2

presents an example, Section 3 offers some background in-

formation, Section 4 presents our approach, Section 5 de-

scribes our experiences of applying our approach on a real-

world policy, Section 6 discusses issues in the approach,

Section 7 presents related work, and Section 8 concludes.

2. Example

This section illustrates our approach to mutation verifi-

cation through a simple example. The example and corre-

sponding properties come from an example used by Fisler

et al. [9]. This access control policy formalizes a univer-

sity’s policy on assigning and accessing grades. It is a role-

based access control [8] policy with two roles specified in

the subject attribute: FACULTY and STUDENT, two pos-

sible resource attributes: INTERNALGRADES and EXTER-

NALGRADES, and three possible action attributes: ASSIGN,

VIEW, and RECEIVE. For this example, we expect the fol-

lowing properties to hold:

Pr1 There do not exist members of STUDENT who can

ASSIGN EXTERNALGRADES.

Pr2 All members of FACULTY can ASSIGN both INTER-

NALGRADES and EXTERNALGRADES.

Pr3 There exists no combination of roles such that a user

with those roles can both RECEIVE and ASSIGN the

resource EXTERNALGRADES.

Property Pr1 is intuitive since we certainly do not

want students to assign grades. Property Pr2 is to ensure

that indeed faculty members can assign grades (otherwise

who would assign them?). Finally, Pr3 is an example of

separation-of-duty since we do not want anyone to assign

their own grade, an apparent conflict of interest.

1 If role = Faculty

2 and resource =

3 (ExternalGrades or InternalGrades)

4 and action = (View or Assign)

5 Then

6 Permit

7 If role = Student

8 and resource = ExternalGrades

9 and action = Receive

10 Then

11 Permit

Figure 1. Rules in an example XACML policy.

1 If role = Faculty

2 and resource =

3 (ExternalGrades or InternalGrades)

4 and action = (View or Assign)

5 Then

6 Deny

7 If role = Student

8 and resource = ExternalGrades

9 and action = Receive

10 Then

11 Permit

Figure 2. The first mutant XACML policy.

1 If role = Faculty

2 and resource =

3 (ExternalGrades or InternalGrades)

4 and action = (View or Assign)

5 Then

6 Permit

7 If role = Student

8 and resource = ExternalGrades

9 and action = Receive

10 Then

11 Deny

Figure 3. The second mutant XACML policy.

Figure 1 shows the example XACML policy. To keep the

example readable and concise, we write the policy as simple

IF-THEN statements. This representation over-simplifies

the complexity of XACML policies but suffices for illustra-

tive purposes.

The first step of mutation verification is to generate mu-

tant policies. For this example, we show only the mutants

produced by the Change Rule Effect (CRE) mutation oper-

ator [17]. The CRE mutation operator simply inverts each

rule’s EFFECT by changing PERMIT to DENY, or DENY to

PERMIT (one at a time for each mutant policy). The number

of mutant policies created by this operator is equal to the



number of rules in the policy. This operator should never

create equivalent mutants, which are mutant policies with

the same behavior as the original policy, unless a rule is

unreachable. The example policy has only two rules and

thus only two mutant policies are generated. Figures 2 and

3 show these two mutant policies for the first and second

rules, respectively.

The second step of mutation verification is to determine

which properties hold for the original policy and each mu-

tant policy. The mutant is said to be killed by a property if

the property holds for the original policy but does not hold

for the mutant policy. In other words, the property reveals

the fault seeded in the mutant policy. Similar to mutation

testing [17, 21], the greater the number of mutants killed,

the more comprehensive the properties are in covering pol-

icy behaviors, and thus the more effective the properties are

at interacting with the rules in the policy.

The original policy (Figure 1) satisfies all three proper-

ties; therefore, if any property does not hold for a mutant

policy, then that mutant policy is killed by the property.

The first mutant policy in Figure 2 does not satisfy Pr2

and thus the first mutant is killed. Recall Pr2 seeks to en-

sure that all faculty members can assign grades. Since the

fault in Figure 2 is precisely the rule that grants this access,

the property is apparently violated. The output of the prop-

erty verification is a list of specific access requests that vi-

olate some property. The output from the property verifica-

tion on the first mutant policy yields two requests: a request

for a FACULTY to ASSIGN INTERNALGRADES and another

request for a FACULTY to ASSIGN EXTERNALGRADES.

Access is denied for both requests, indicating a violation

of property Pr2.

The second mutant policy in Figure 3 is not killed by any

of the three properties, reflecting that the properties are not

comprehensive and do not completely “cover” the policy.

This realization leads to the elicitation of our fourth prop-

erty, which was not originally specified by Fisler et al. [9]:

Pr4 All members of STUDENT can RECEIVE EXTERNAL-

GRADES.

Property Pr4 fails to hold for the second mutant policy

in Figure 3, thus killing the mutant, revealing its fault, and

increasing the mutant-killing ratio.

In general, mutation verification serves two main pur-

poses: (1) to quantify how thoroughly a set of properties

interacts with or covers the policy behavior and (2) to fa-

cilitate property elicitation such that a property set interacts

with or covers all rules defined in the policy. In particular,

the CRE mutation operator is useful in identifying specific

rules that are not covered by the property set. The CRE

mutation operator and other mutation operators together are

useful in quantifying the overall quality of the property set.

As a by-product of this process, a test suite is generated

consisting of each counterexample produced for each fail-

ing property in the form of a concrete access request and an

expected response. The quality of this test suite is directly

dependent on the quality of the property set.

3. Background

This section presents background information including

a description of XACML, policy mutation testing, and Mar-

grave, a policy verification tool used in our approach.

3.1. XACML

The eXtensible Access Control Markup Language

(XACML) is an XML-based syntax used to express policies,

requests, and responses. This general-purpose language for

access control policies is an OASIS (Organization for the

Advancement of Structured Information Standards) stan-

dard [1] that describes both a language for policies and a

language for requests or responses of access control deci-

sions. The policy language is used to describe general ac-

cess control requirements and is designed to be extended to

include new functions, data types, combining logic, etc.

3.2. Policy Mutation Testing

Mutation testing [7] has historically been applied to

general-purpose programming languages. The program un-

der test is iteratively mutated to produce numerous mutants,

each containing one fault. A test input is independently ex-

ecuted on the original program and each mutant program. If

the output of a test input executed on a mutant differs from

the output of the same test input executed on the original

program, then the seeded fault is detected and the mutant is

said to be killed.

Policy mutation testing [17, 21] has been used to mea-

sure the fault-detection capability of a request set. In our

previous work [17], we proposed a fault model for access

control policies and defined a set of mutation operators that

implement that model with the goal of programmatically

creating mutant policies in order to evaluate test generation

techniques and coverage criteria in terms of fault-detection

capability. Similarly, Traon et al. [21] adapt mutation anal-

ysis and define mutation operators to quantify the effective-

ness of a test set. Unfortunately, there are various expenses

and barriers associated with mutation testing [17]. Primar-

ily the generation and execution of a large number of mu-

tants on a large test set. Fortunately, policy mutation test-

ing is not as expensive as program mutation testing simply

because policy specification languages are far simpler than

general-purpose programming languages. Similarly and for

the same reason, formal verification of policy specification

is less costly. This distinction is one of the primary reasons



that policy mutation verification is feasible. We use a vari-

ant of the policy mutation testing framework from our previ-

ous work [17] to facilitate the implementation of our policy

mutation verification approach presented in Section 4.

Mutation analysis has been applied to model-based test-

ing as well. Generally a model checker accepts a state-based

model and a property, and outputs a counterexample if that

property is not satisfied. The counterexample is essentially

a test input that can then be executed on the concrete imple-

mentation of the model. Specification mutation [5] is a way

to measure the effectiveness of a test input by mutating the

specification. The specification is a set of properties that de-

scribe how the model should behave. By mutating the spec-

ification (i.e., properties), one can determine the adequacy

of the model and its corresponding implementation. Con-

versely one can mutate the model [4, 10] to determine the

adequacy of the specification. Our approach presented in

Section 4 is analogous to model mutation where the model

is the policy and the specification are the properties.

4. Mutation Verification

This section presents our approach for policy mutation

verification to assess the quality of policy properties. We

next describe the details of each step in the approach: mu-

tant generation, property verification, mutant-killing deter-

mination, and property generation.

4.1. Mutant Generation

Given a policy, the first step is to generate a set of mu-

tant policies. In our previous work [17], we presented a

fault model for access control policies and a mutation test-

ing framework to investigate the fault model. The frame-

work includes mutation operators used to implement the

fault model, mutant generation, equivalent-mutant detec-

tion, and mutant-killing determination. Previously, we used

mutation testing to measure the quality of a request set in

terms of fault-detection capability. In our new approach,

we generate mutants not to measure the quality of a request

set, but to measure the quality of a set of properties used

for property verification. We use the Change Rule Effect

(CRE) [17] mutation operator to help guide property elici-

tation to improve upon the existing property set.

The inputs to this step are the policy under test and a

set of mutation operators. The mutator then generates a

set of mutant policies, each with a single fault. Among

generated mutants, semantically equivalent mutants to the

original policy may exist. Such mutants and the original

policy produce the same policy decisions for all possible

requests. We leverage a change-impact analysis tool such

as Margrave [9] to detect equivalent mutants by comparing

the original policy and each mutant policy. Note that if a

Figure 4. Property verification.

mutant is lengthy and semantically quite different from the

original one, their comparison is often costly.

4.2. Property Verification

Given a policy, a set of properties, and a set of mutant

policies, the next step is to determine which properties hold

and which properties do not hold for both the original policy

and each mutant policy as illustrated in Figure 4. We lever-

age Margrave [9] to perform property verification. Mar-

grave represents XACML policies as multi-terminal binary

decision diagrams (MTBDDs). MTBDDs are a type of deci-

sion diagram that maps bit vectors over a set of variables to

a finite set of results. Margrave is implemented on top of the

CUDD package [20], which provides an efficient implemen-

tation of MTBDDs. Margrave can verify various properties

(that are represented in Margrave’s specific format) against

a given policy. Property Pri in Section 2 can be converted

to Margrave’s specific format and verified whether Pri is

satisfied by the policy.

To perform property verification on a policy using Mar-

grave, a Scheme program is written that leverages the Mar-

grave API. This program must load the policy, optionally

specify any environment constraints, and define the set of

properties that the policy must satisfy. In order to perform

property verification programmatically for each mutant pol-

icy, we generate an executable script and Scheme program

for both the original policy and each mutant policy. We

specified and generated an EMF1 (Eclipse Modeling Frame-

work) model that encapsulates the necessary information

to generate the executable scripts and Scheme programs.

Given an instance of this EMF model, we use the Model To

Text (M2T2) framework and a set of Java Emitter Templates

1http://www.eclipse.org/modeling/emf/
2http://www.eclipse.org/modeling/m2t/



(JET) to generate executable shell scripts and Scheme pro-

grams for each policy under test and its corresponding set

of mutants. The generated scripts pipe a generated Scheme

program to a command-line Scheme interpreter. The out-

put of the Scheme interpreter is then piped to a trace file for

further processing. These trace files contain the information

necessary for determining which properties hold and which

properties do not hold for the original policy and each mu-

tant policy.

4.3. Mutant-Killing Determination

The next step is to compute the mutant-killing ratio. The

mutant-killing ratio is the ratio of the number of mutants

killed to the total number of mutants. This ratio serves as

a metric to quantify the quality of a set of properties with

respect to covering a given policy. A higher mutant-killing

ratio indicates the property set interacts with or covers a

higher number of rules defined in the policy.

The trace files generated by the property verification de-

scribed earlier are parsed in order to divide the property set

into four subsets for each mutant. A property is either true

or false (i.e., the property is satisfied or is not satisfied) with

respect to a given policy. Let P denote the set of all proper-

ties. Let the set of properties satisfied by the original policy

be denoted by OT and let the set of properties not satisfied

by the original policy be denoted OF .

P = OT ∪ OF (1)

Similarly, given a mutant policy M , let the set of properties

satisfied by the mutant policy be denoted by MT and the set

of properties not satisfied by the mutant policy be denoted

MF and by Equation 2 all properties fall into one of these

sets.

P = MT ∪ MF (2)

For our case study described in Section 5, all properties are

intended to be satisfied by the original policy (i.e., holding

true). A property that holds true for both the original policy

and the mutant policy cannot expose the fault in the mutant

policy because the property does not apply to the portion of

the policy that contains the fault. On the other hand, if at

least one property holds true for the original policy but fails

to hold true for the mutant policy as formalized in Equa-

tion 3, then the mutant is killed.

∃p ∈ P : p ∈ OT ∩ MF (3)

4.4. Property Generation

To increase property coverage and investigate property

verification, we manually generate additional properties for

a given policy. A property Pri is elicited by considering a

Table 1. Policies used in the case-study.
Subject # Set # Policy # Rule # Property

CONTINUE-A 111 266 298 9

CONTINUE-B 111 266 306 9

SIMPLE-POLICY 1 2 2 3

“living” CRE mutant. Each CRE mutant corresponds to a

specific policy rule. When a given rule changes effect (e.g.,

deny to permit), the corresponding property Pri may de-

tect a semantic change and by definition Pri kills the CRE

mutant. To elicit Pri, we manually inspect the rule’s con-

text. Let S, O, and A denote the set of subjects, objects,

and actions in a rule, respectively. A rule is in the form

[S∩O∩A → Effect] where the effect is either Permit or

Deny. If an effect is Permit (Deny), we generate a prop-

erty that a subject S can (cannot) take an action A on re-

source O. For a mutant policy, when the effect is changed to

Deny (Permit), the property may detect a semantic fault

in the mutated policy and cover the not-covered rule being

mutated.

5. Case Study

We have applied our mutation verification tool to an ac-

cess control policy for CONTINUE [15]. CONTINUE is a

web-based conference management system that supports

the submission, review, discussion, and notification phases

of conferences. The CONTINUE policy was used as a case

study to explore property verification and change-impact

analysis for Margrave by Fisler et al. [9]. The conference

management system itself has been used to manage sev-

eral conferences. Table 1 lists the policies used in our case

study. Each row corresponds to a policy and Columns 2,

3, and 4 denote the number of POLICYSET, POLICY, and

RULE elements in each policy, respectively. Column 5 de-

notes the number of properties used for each policy. We

selected these policies in our case study because these poli-

cies are available with their formal properties. The SIM-

PLE policy was presented in Section 2 and CONTINUE-A

and CONTINUE-B are two versions of the CONTINUE pol-

icy. All three policies and property sets are available at the

Margrave web site3.

We divide the case study into two parts: the first part per-

forms mutation verification with the CRE mutation operator

for property assessment while the second part performs mu-

tation verification with several mutation operators and the

additional manually specified properties for property aug-

mentation.

3http://www.cs.brown.edu/research/plt/software/

margrave/



Table 2. Mutant-killing ratios.
Subject mutant-kill ratio # mutants # killed

CONTINUE-A 24.16% 298 72

CONTINUE-B 24.84% 306 76

SIMPLE-POLICY 50.00% 2 1

5.1. Property Assessment

Table 2 shows the results of mutation verification using

only the CRE mutation operator, specifically the number

of mutants (Column 3), number of killed mutants (Column

4), and the mutant-killing ratio (Column 2) for each pol-

icy. As discussed in Section 2, the SIMPLE policy has only

two rules and thus two mutant policies are generated with

the CRE mutation operator. One mutant is killed so the

mutant-killing ratio is simply 1

2
or 50%. The complexity

of the CONTINUE policies makes them far more interest-

ing. Each version of CONTINUE has approximately 300
rules and roughly 1

4
of the mutants generated from these

rules are killed. This result shows that a single property can

cover multiple rules (which can be inferred by comparing

the number of rules to the number of properties).

Figure 5. CONTINUE-A property failures for
each policy-property pair.

To further visualize and discuss the results, let each prop-

erty and each mutant be identified by an integer number.

For example, let the original policy be denoted P0, each

mutant policy be denoted P1, P2, . . . Pm, and each property

Pr0, P r1, . . . P rp−1 where m and p are the number of mu-

tants and properties, respectively. A property-policy pair

(Prx, Py) is mapped to a point (x, y) in Figures 5 and 6.

A data point is plotted on the chart at (x, y) if the property

Prx fails to hold for Policy Py . Therefore, Figures 5 and 6

illustrate all property failures for each property-policy pair.

Figure 6. CONTINUE-B property failures for
each policy-property pair.

More specifically, each integer value along the horizontal

axis denotes a single property and each integer value along

the vertical axis denotes a single policy. Furthermore, the

policy at y = 0 is the original (un-mutated) policy. These

scatter plots allow us to quickly determine which properties

interact with which rules in the policy.

Property Pr0 fails to hold for the original version of

CONTINUE-A indicated by a data point at (Pr0, P0) in Fig-

ure 5. As a result, Pr0 also fails to hold for any mutant poli-

cies as indicated by the numerous data points along x = 0.

If a property fails to hold for the original policy, then the

property is not expected to (and most likely will not) hold

for any mutant policies. Furthermore, this property is not

capable of killing mutants because in order for a mutant to

be killed by a property, the property must be satisfied by

the original policy as described in Section 4. The natural

language for this property is as follows:

Pr0 If the subject is a pc-member, it is not the discussion

phase, and unsubmitted for the review for a paper de-

spite being assigned it, then the subject cannot see all

parts of other’s reviews for that paper.

This property fails simply because CONTINUE-A is an ear-

lier version of the policy. All properties including Pr0 do

hold for the revised version in Figure 6.

Another readily noticeable peculiarity of both Figures 5

and 6 is the absence of Pr8. Recall that nine properties are

verified against each policy, implying one property, Pr8,

does not appear to interact with any rule explicitly defined in

the policy. The natural language for the “missing” property

is:

Pr8 No legal request is mapped to Not Applicable, that is

every legal request is decided by either deny or permit.



Pr8 is an excellent example of a valid property that is not

explicitly specified in the policy itself. A policy should cer-

tainly be written such that every legal request returns a deny

or permit response. This property, however, is a generic

property potentially applicable to a wide range of policies.

Although the property is quite relevant, it is not (and ar-

guably should not) be specified explicitly in the policy it-

self. An argument against its inclusion in the policy itself

is that the property is generic; in particular, it is unrelated

to the access control logic of the system but is rather one

of the best practices. This type of generic property is not

accounted for in this implementation of mutation verifica-

tion. Further investigation is needed to determine how to

incorporate such properties. For instance, mutation opera-

tors that consider not only the policy but also the properties

may account for these types of properties.

The un-mutated CONTINUE-B (P0 in Figure 6) satisfies

all properties as indicated by the lack of data points along

P0 = y = 0. Again, Pr8 (i.e., x = 8) is not plotted be-

cause this generic property does not interact directly with

any rules specified in the policy. Properties Pr5 and Pr7 are

interesting because they fail for only a single rule for both

CONTINUE-A and CONTINUE-B. The natural language for

these properties are:

Pr5 If a subject is not a pc-chair or admin, then he/she may

not set the meeting flag.

Pr7 If someone is not a pc-chair or admin, then he/she

can never see paper-review-rc for which he/she is con-

flicted.

By manual inspection, we determine that the mutant

killed by Pr5 is the same for both versions of the pol-

icy. The killed mutant corresponds to the last rule in the

POLICYSET that specifies access to the meeting flag. More

specifically, once all permitted combinations of subjects and

actions are specified, the final rule ensures all other requests

for the meeting flag are denied. Because the mutant policy

changed this rule’s decision to permit, the mutant was killed

by Pr5. In a similar fashion, the killed mutant for Pr7 is

identical for both versions and corresponds to precisely the

rule that ensures the denial of requests for paper reviews

when the isConflicted flag is set.

The CONTINUE policy heavily uses the first-applicable

combining algorithm. As a result, it is often the case that,

for a given resource, all permitting rules are specified first

followed by more general denying rules. When these types

of denying rules are mutated to permit, the policy leaks

sensitive information (i.e., access is granted when it should

not). A general property for ensuring that sensitive informa-

tion remains protected is effective at identifying these leaks.

For example, properties Pr1 in Figure 5 and Pr3 in Figure 6

are in fact the same property. This property interacts with a

large number of policy rules indicated by the large number

of data points. This property in natural language states that

if the subject role attribute is empty and the resource class is

not conference info, then return deny. This property effec-

tively identifies information leakage introduced through the

mechanism described earlier. This result indicates that this

property set is effective at identifying information leakage

in the policy.

On the other hand, the mutants that are not killed are

generally those that mutate a permitting rule to deny. For

example, when the rule that allows the admin to read

the pcMember-info-isChairFlag is switched from permit to

deny, no property identifies the restricted access. Similar to

having general properties for ensuring that sensitive infor-

mation remains protected, one also wants to have properties

for ensuring access is granted when appropriate. The fact

that the un-killed mutants are generally of this type indicates

that the property set can be improved by adding properties

for ensuring that access is granted when appropriate.

5.2. Property Augmentation

The low mutant-killing ratios in Section 5.1 imply that

the existing property set can be improved by augmenting

the existing property set. Motivated by these mutation veri-

fication results, we manually generate properties to kill the

“living” CRE mutants. We do so by creating a property that

mirrors a not-covered rule. Because each mutant created

with the CRE mutation operator is associated with a single

rule in the policy, we can identify which rules in the policy

are not covered by the existing property set. After manu-

ally constructing these properties, we then perform muta-

tion verification using various mutation operators to com-

pare the quality of the existing property sets with the aug-

mented property sets (i.e., the existing property set plus the

manually specified properties).

Unfortunately, the size of the CONTINUE policy makes

manually specifying properties impractical. As a result, for

this case study, we investigate the first nine, commonly used

rules in the CONTINUE-A and CONTINUE-B policies. Fur-

thermore, because the difference between the CONTINUE-

A and CONTINUE-B policies is small and the rules that we

consider for manual property generation are identical, the

results are the same for both policies. For brevity, we refer

to the results of both policies simply as CONTINUE.

The manually generated properties are elicited by con-

sidering the “living” CRE mutants since each CRE mutant

corresponds to a single rule in the policy. Since the SIMPLE

policy has only one “living” mutant, only one additional

property is specified. Furthermore, the property mirrors the

policy rule. For example, the property “A student can write

grades” is generated based on the policy rule “A student is

permitted to write grades”.

Table 3 summarizes the number of generated mutants,



Table 3. Policy mutation and mutants killed by property sets.
SIMPLE CONTINUE

Mutants # mutants # kill kill % # new kill new kill % # mutants # kill kill % # new kill new kill %

PSTT 0 0 0 0 0 2 2 100 2 100

PSTF 1 1 100 1 100 6 3 50 3 50

PTT 2 2 100 2 100 7 3 43 7 100

PTF 2 2 100 2 100 9 3 33 3 33

RTT 2 2 100 2 100 0 0 0 0 0

RTF 2 2 100 2 100 9 0 0 0 0

CPC 0 0 0 0 0 7 0 0 2 17

CRC 0 0 0 0 0 0 0 0 0 0

CRE 2 1 50 2 100 9 1 11 7 78

Total 11 10 90.91 11 100 49 12 24.49 24 48.98

the number of killed mutants, and the mutant-killing ratio

for each policy for both the existing property set P and the

augmented property set Pnew. Each row of the table cor-

responds to a particular mutation operator and the column

groups 1 and 2 correspond to the SIMPLE policy and the

CONTINUE policy, respectively.

In the case study, we do not use some mutation operators

if they result in equivalent mutants for the given policy or

if the property verification tool cannot handle a particular

XACML feature. For example, we omit RCT (Rule Condi-

tion True) and RCF (Rule Condition False) operations since

the policies do not use that feature of rule conditions due

to a limitation in the current Margrave. In addition, Mar-

grave sometimes reports errors during property verification

of some mutants. For instance, some properties require that

certain elements exist in a given policy. Mutation opera-

tions such as PSTT (Policy Set Target True) may remove

elements that are necessary in order to verify a particular

property. These errors correctly indicate semantic faults in

mutant policies and so we consider them killed.

The PTT (Policy Target True) and PTF (Policy Target

False) operators delete or modify the top-level policy ele-

ment in the SIMPLE policy effectively; these operators re-

move one of the two rules resulting in drastic semantic dif-

ferences that are immediately detected by the both P and

Pnew. On the other hand, the CPC (Change Policy Combin-

ing Algorithm) and CRC (Change Rule Combining Algo-

rithm) mutation operators generate equivalent mutants (i.e.,

mutants that are semantically equivalent to the original pol-

icy) that cannot be killed. For the CONTINUE policy, the

CRC generates equivalent mutants. Such semantic equiv-

alent mutants are detected and not considered in our case

study.

Table 3 shows that the existing property set P can kill

50% and 11% of CRE mutants in SIMPLE and CONTINUE

policies, respectively. By manually specifying a property

that mirrors the not-covered rule for the SIMPLE policy,

we can kill all CRE mutant policies. As expected, the

augmented property set Pnew increases mutant-killing ra-

tios only in the CRE mutants since the remaining mutants

cannot be killed. For the CONTINUE policy, we manually

specify six properties and the augmented property set Pnew

kills 78% of the CRE mutants. The two not-covered rules

(i.e., “living” CRE mutants) cannot be killed. Pnew also

increases the mutant-killing ratios for other mutation oper-

ators.

We observed that some types of mutants cannot be killed

with Pnew. For example, PSTT, CPC, and CRC mutants

and RTT, RTF, and CRC mutants are not killed. These mu-

tants may not be semantically equivalent to the original pol-

icy. However, the property set Pnew is not sufficient to kill

these mutants.

6. Discussion

We believe that our approach can be applied to assess

the quality of a property set against policies written in lan-

guages other than XACML. Previous approaches converted

policies in one language (such as XACML) to other lan-

guages (such as Alloy [12], RW [23], and Description Log-

ics [14]) that are equipped with verification tools. As our

approach requires property verification (against a policy and

its mutants) provided by these verification tools, such con-

version enables our approach to also be applicable to poli-

cies languages other than XACML and with verification

tools other than Margrave.

Our approach to mutation verification provides a qual-

ity assessment of a property set for a policy. If a property

set achieves a mutant-killing ratio of 100%, can we say that

the property set is exhaustive or complete? This situation is

similar to statement coverage in software testing. If a test

suite achieves 100% statement coverage for a given pro-

gram, can we say the test suite can detect all faults in the

program? The answer, of course, is absolutely not. While

mutation verification serves as a quality assessment for a

property set and, with the CRE mutation operator, identifies



which properties interact with which rules in the policy, it

may not consider more abstract, generic properties. For ex-

ample, Pr1 of the illustrative example in Section 2 ensures

that a student cannot assign grades. While this property is

an intuitive one of the problem domain, it is not explicitly

expressed in the policy itself. This particular policy con-

tains only rules that allow access whereas this property is

concerned with denying access. The fact that this property

does not interact with the rules in the policy does not im-

ply that it is not needed. A better example is discussed in

Section 5 where a property serves as more of the best prac-

tice that is not related to the problem domain of the access

control.

Future work shall investigate a means of automatically

generating various types of properties to cover more rules

and entities in an access control policy. In our case study,

we manually generated properties to cover not-covered

rules based on the mutation verification results for the CRE

mutation operator. As we extracted these properties from

(explicitly expressed) not-covered rules, each of the proper-

ties is specifically effective to kill the (previously un-killed)

rule. But these properties may not kill other mutants. As

existing properties often describe more general behaviors

of a policy, further exploration of mutation operators for

mutation verification is needed to investigate how to reflect

relevant properties (that are not necessarily specified in the

policy itself) in the mutation verification process.

7. Related Work

To the best of our knowledge, no metric has been de-

fined to quantify the coverage of a policy or model by some

property set. Our related previous approach on policy mu-

tation testing [17] defined a fault model and corresponding

automated mutator in order to quickly assess the quality of

a test suite; the assessment results can be further used to

assess test-generation and test-selection techniques in terms

of fault-detection capability. Such policy mutation testing is

related to the approach proposed by Ammann et al. [3] that

mutates a model (corresponding to a policy in our work)

and then uses the model mutants to assess the quality of a

test suite. Our new approach leverages a variation of an au-

tomated mutator [17] in our implementation of the mutation

verification approach. However, different from these previ-

ous approaches on assessing the quality of a test suite, our

new approach focuses on assessing the quality of a property

set based on mutating a policy.

To help ensure the correctness of policy specifications,

researchers and practitioners have developed formal verifi-

cation tools for policies. Several policy verification tools

are developed specifically for firewall policies. Al-Shaer

and Hamed [2] developed the Firewall Policy Advisor to

classify and detect policy anomalies. Yuan et al. [22] devel-

oped the FIREMAN tool to detect misconfiguration of fire-

wall policies.

There are also several verification tools available for

XACML policies [1]. Hughes and Bultan [11] translated

XACML policies to the Alloy language [12], and checked

their properties using the Alloy Analyzer. Schaad and Mof-

fett [19] also leverage Alloy to check that role-based access

control policies do not allow roles to be assigned to users

in ways that violate separation-of-duty constraints. Zhang

et al. [24] developed a model-checking algorithm and tool

support to evaluate access control policies written in RW

languages, which can be converted to XACML [23]. Ko-

laczek [13] proposes to translate role-based access control

policies into Prolog for verification. Kolovski et al. [14] for-

malize XACML policies with description logics (DL), which

are a decidable fragment of the first-order logic, and exploit

existing DL verifiers to conduct policy verification. Fisler

et al. [9] developed Margrave, which can verify XACML

policies against properties, if properties are specified, and

perform change-impact analysis on two versions of poli-

cies when properties are not specified. When Margrave de-

tects property violations during policy verification, it auto-

matically generates concrete counterexamples in the form

of specific requests that illustrate violations of the speci-

fied properties. Similarly, when Margrave detects semantic

differences during change-impact analysis, it automatically

generates specific requests that reveal semantic differences

between two versions of a policy. Most of these approaches

require user-specified properties to be verified. Our new ap-

proach complements these existing policy verification ap-

proaches because our approach helps assess the quality of

the properties during policy verification.

Our previous work [16] proposed an approach to policy

property inference via machine learning. Such properties

are often not available in practice and their elicitation is a

challenging and tedious task. Furthermore, once proper-

ties are defined, it is difficult to assess their effectiveness

and identify potential problematic areas that need improve-

ment. Our mutation verification approach intends to help al-

leviate that challenge. Our implementation leverages Mar-

grave’s property verification feature to verify mutant poli-

cies against properties.

Although various coverage criteria [25] for software pro-

grams exist, only recently have coverage criteria for access

control policies been proposed [18]. Policy coverage crite-

ria are needed to measure how well policies are tested and

which parts of the policies are not covered by the existing

test inputs. Martin et al. [18] defined policy coverage and

developed a policy coverage measurement tool. Because it

is tedious for developers to manually generate test inputs

for policies, and manually generated test inputs are often

not sufficient for achieving high policy coverage, they de-

veloped several test generation techniques. Different from



these policy testing approaches, our new approach focuses

on assessing the quality of properties in policy verification.

8. Conclusion

The need for carefully controlling access to sensitive

information is increasing as the amount and availability

of data are growing. In order to separate the semantics

of access control from the system itself, policy authors

increasingly specify access control policies in declarative

languages such as XACML. Doing so facilitates managing,

maintaining, and analyzing policies. To increase confidence

in the correctness of specified policies, policy authors can

formally verify policies against a property set. Policy veri-

fication is an important technique for high assurance of the

correct specification of access control policies. Since the ef-

fectiveness of the verification process is directly dependent

on the quality of the properties, we have proposed a novel

approach called mutation verification to assess the quality

of a property set in verification of access control policies.

We have implemented a tool for the approach being applied

on XACML policies. We applied our mutation verification

tool to policies and properties from a real-world software

system. Our experiences show that the performance of the

property verification is encouraging and mutation verifica-

tion can scale to sufficiently large access control policies.

Furthermore, mutation verification is a complementary ap-

proach to property verification by aiding in the elicitation of

properties.

Acknowledgment

This work is supported in part by NSF grant CNS-

0716579 and its NIST supplement.

References

[1] OASIS eXtensible Access Control Markup Language

(XACML). http://www.oasis-open.org/

committees/xacml/, 2005.

[2] E. Al-Shaer and H. Hamed. Discovery of policy anomalies

in distributed firewalls. In Proc. INFOCOM, pages 2605–

2616, 2004.

[3] P. Ammann and P. E. Black. A specification-based coverage

metric to evaluate test sets. In Proc. HASE, pages 239–248,

1999.

[4] P. E. Ammann, P. E. Black, and W. Majurski. Using model

checking to generate tests from specifications. In Proc.

ICFEM, pages 46–54, 1998.

[5] T. A. Budd and A. S. Gopal. Program testing by specifica-

tion mutation. Computer Languages, 10(1):63–73, 1985.

[6] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Pon-

der policy specification language. In Proc. POLICY, pages

18–38, 2001.

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test

data selection: Help for the practicing programmer. IEEE

Computer, 11(4):34–41, April 1978.

[8] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-

Based Access Control. Artech House, Inc., 2003.

[9] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.

Tschantz. Verification and change-impact analysis of

access-control policies. In Proc. ICSE, pages 196–205,

2005.

[10] G. Fraser and F. Wotawa. Using model-checkers for

mutation-based test-case generation, coverage analysis and

specification analysis. In Proc. ICSEA, pages 16–21, 2006.

[11] G. Hughes and T. Bultan. Automated verification of access

control policies. Technical Report 2004-22, Department of

Computer Science, University of California, Santa Barbara,

2004.

[12] D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodu-

larity mechanism. In Proc. ESEC/FSE, pages 62–73, 2001.

[13] G. Kolaczek. Specification and verification of constraints in

role based access control for enterprise security system. In

Proc. WETICE, pages 190–195, 2003.

[14] V. Kolovski, J. Hendler, and B. Parsia. Analyzing web ac-

cess control policies. In Proc. WWW, pages 677–686, 2007.

[15] S. Krishnamurthi. The CONTINUE server (or, how i admin-

istered PADL 2002 and 2003). In Proc. PADL, pages 2–16,

2003.

[16] E. Martin and T. Xie. Inferring access-control policy proper-

ties via machine learning. In Proc. POLICY, pages 235–238,

2006.

[17] E. Martin and T. Xie. A fault model and mutation testing

of access control policies. In Proc. WWW, pages 667–676,

2007.

[18] E. Martin, T. Xie, and T. Yu. Defining and measuring policy

coverage in testing access control policies. In Proc. ICICS,

pages 139–158, 2006.

[19] A. Schaad and J. D. Moffett. A lightweight approach to

specification and analysis of role-based access control ex-

tensions. In Proc. SACMAT, pages 13–22, 2002.

[20] F. Somenzi. CUDD: CU Decision Diagram Package.

http://vlsi.colorado.edu/˜fabio/CUDD/.

[21] Y. L. Traon, T. Mouelhi, and B. Baudry. Testing security

policies: Going beyond functional testing. In Proc. ISSRE,

pages 93–102, 2007.

[22] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mo-

hapatra. FIREMAN: A toolkit for FIREwall Modeling and

ANalysis. In Proc. S&P, pages 199–213, May 2006.

[23] N. Zhang, M. Ryan, and D. P. Guelev. Synthesising verified

access control systems in XACML. In Proc. FMSE, pages

56–65, 2004.

[24] N. Zhang, M. Ryan, and D. P. Guelev. Evaluating access

control policies through model checking. In Proc. InfoSec,

pages 446–460, 2005.

[25] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test

coverage and adequacy. ACM Comput. Surv., 29(4):366–

427, 1997.


