BIG QUAKE

(Blnary Goppa QUAsi-cyclic Key Encapsulation)

M. Bardet, E. Barelli, O. Blazy, R. Canto-Torres, A. Couvreur, P. Gaborit, A. Otmani, N. Sendrier and J.-P. Tillich

INRIA, CNRS, École Polytechnique, Université de Limoges, Université de Rouen

NIST 1st standardization workshop, April 2018

Outline

- Presentation
- Security

Suggested parameters

BIG QUAKE is a public key encryption scheme based on quasi-cyclic Goppa codes.

• based on binary Goppa codes (unbroken since 1978);

BIG QUAKE is a public key encryption scheme based on quasi-cyclic Goppa codes.

- based on binary Goppa codes (unbroken since 1978);
- uses quasi-cyclicity to reduce the key size:

BIG QUAKE is a public key encryption scheme based on quasi-cyclic Goppa codes.

- based on binary Goppa codes (unbroken since 1978);
- uses quasi-cyclicity to reduce the key size:

The cost of message recovery attack is mostly unchanged;

BIG QUAKE is a public key encryption scheme based on quasi-cyclic Goppa codes.

- based on binary Goppa codes (unbroken since 1978);
- uses quasi-cyclicity to reduce the key size:

- The cost of message recovery attack is mostly unchanged;
- The cost of key-recovery attacks is reduced but remains significantly above that of message recovery attacks.

BIG QUAKE is a public key encryption scheme based on quasi-cyclic Goppa codes.

- based on binary Goppa codes (unbroken since 1978);
- uses quasi-cyclicity to reduce the key size:

- The cost of message recovery attack is mostly unchanged;
- The cost of key-recovery attacks is reduced but remains significantly above that of message recovery attacks.
- ⇒ Same security as classic McEliece but with shorter keys (size divided by a factor between 3 and 19).

Semantic security

BIG QUAKE is proved to be OW IND-CPA in the Random Oracle Model under the following assumptions:

- Decoding ℓ -quasi-cyclic (ℓ -QC) codes is hard;
- Distingushing ℓ -QC Goppa codes from arbitrary ℓ -QC codes is hard.

Known attacks

Definition

Let $\mathscr C$ be an ℓ –QC code, we denote by $\mathscr C^{\sigma_\ell}$ the code:

$$\mathscr{C}^{\sigma_\ell} \stackrel{\mathsf{def}}{=} \{ oldsymbol{c} \in \mathscr{C} \mid \sigma_\ell(oldsymbol{c}) = oldsymbol{c} \}$$

where σ_{ℓ} denotes the ℓ -blockwise cyclic shift.

Proposition

Let \mathscr{C} be an ℓ -QC Goppa code, then $\mathscr{C}^{\sigma_{\ell}}$ is a Goppa code (whose length and dimension are divided by ℓ).

5 / 12

- Message recovery attacks. We chose our parameters to resist to any known variant of ISD.
- **Key recovery attacks**. Our parameters are computed in order to resist to:

¹J.-C. Faugère, V. Gauthier–Umaña, A. Otmani, L. Perret, J.-P. Tillich. A distinguisher for High-rate McEliece Cryptosystems. IEEE ITW 2011.

- Message recovery attacks. We chose our parameters to resist to any known variant of ISD.
- **Key recovery attacks**. Our parameters are computed in order to resist to:
 - Brute force search on $\mathscr{C}^{\sigma_\ell}$ combined with Sendrier's *Support Splitting Algorithm*.

¹J.-C. Faugère, V. Gauthier-Umaña, A. Otmani, L. Perret, J.-P. Tillich. *A distinguisher for High-rate McEliece Cryptosystems*. IEEE ITW 2011.

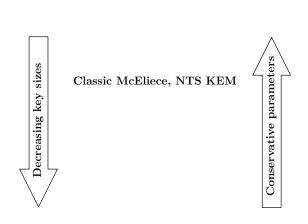
- Message recovery attacks. We chose our parameters to resist to any known variant of ISD.
- **Key recovery attacks**. Our parameters are computed in order to resist to:
 - Brute force search on $\mathscr{C}^{\sigma_\ell}$ combined with Sendrier's *Support Splitting Algorithm*.
 - Distinguisher [FGOPT 11]¹ on \mathscr{C} and $\mathscr{C}^{\sigma_{\ell}}$.

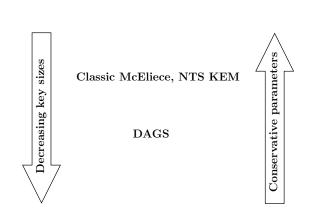
¹J.-C. Faugère, V. Gauthier-Umaña, A. Otmani, L. Perret, J.-P. Tillich. *A distinguisher for High-rate McEliece Cryptosystems*. IEEE ITW 2011.

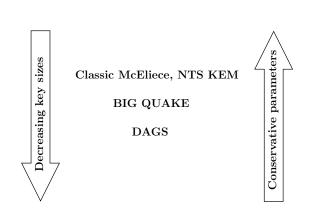
- Message recovery attacks. We chose our parameters to resist to any known variant of ISD.
- **Key recovery attacks**. Our parameters are computed in order to resist to:
 - Brute force search on $\mathscr{C}^{\sigma_{\ell}}$ combined with Sendrier's Support Splitting Algorithm.
 - Distinguisher [FGOPT 11]¹ on \mathscr{C} and $\mathscr{C}^{\sigma_{\ell}}$.
 - Attacks based on polynomial systems solving (conservative analysis).

¹J.-C. Faugère, V. Gauthier-Umaña, A. Otmani, L. Perret, J.-P. Tillich. A distinguisher for High-rate McEliece Cryptosystems. IEEE ITW 2011.

- Message recovery attacks. We chose our parameters to resist to any known variant of ISD.
- Key recovery attacks. Our parameters are computed in order to resist to:
 - Brute force search on $\mathscr{C}^{\sigma_\ell}$ combined with Sendrier's *Support Splitting Algorithm*.
 - Distinguisher [FGOPT 11]¹ on \mathscr{C} and $\mathscr{C}^{\sigma_{\ell}}$.
 - Attacks based on polynomial systems solving (conservative analysis).
 - Additional cautions : ℓ primitive modulo 2 to limit the number of intermediary codes that an attacker can compute.


¹J.-C. Faugère, V. Gauthier-Umaña, A. Otmani, L. Perret, J.-P. Tillich. *A distinguisher for High-rate McEliece Cryptosystems*. IEEE ITW 2011.


Suggested parameters


Security	m	Length	Dimension	ℓ	Public key
Level					size (kBytes)
1	12	3510	2418	13	25.3
3	18	7410	4674	19	84.1
5	18	10070	6650	19	149.6

Thanks for your attention!