Multisignatures and Threshold Signatures in a Bitcoin Context

Andrew Poelstra
Director of Research, Blockstream
Bitcoin is a cryptocurrency denominated in *unspent transaction outputs* (UTXOs) labelled by a value and (script) public key.

Transactions destroy UTXOs and create new UTXOs with equivalent value and different public keys.

Transactions are serialized onto a *blockchain* which defines a canonical history.
Bitcoin users generate a lot of keys; must store and recognize these.

Loss or theft of a key is not recoverable.

Keys are typically not uniform random; are related in detectable ways.

Diverse hardware: PCs, tiny devices, cell phones, virtual machines. Allergic to randomness.
Schnorr Signatures

\[P = xG \]

\[R = kG \]

\[e = H(P, R, m) \]

\[s = k + ex \]

Notice \(P \) in the hash function.
Consider “BIP32” keys P and P', where $P' = P + \gamma G$ for some non-secret γ.

Used to make key generation and backup more tractable.

\[
R = kG \\
e = H(R, m) \\
s = k + ex \\
\rightarrow k + ex + e\gamma
\]
Consider the “sign-to-contract” construction which overloads a signature as a signature on another, auxiliary message.

Used for timestamping, wallet audit logging, and anti-covert-sidechannel resistance.

\[
P = xG
\]

\[
R^0 = kG
\]

\[
R = R^0 + H(R^0\|c)G
\]

\[
e = H(P, R, m)
\]

\[
s = (k + H(R^0\|c)) + ex
\]
Now suppose $k = H(x||m)$, as in RFC6979.

\[
\begin{align*}
 s &= (k + H(R^0||c)) + ex \\
 -s &= (k + H(R^0||c')) + e'x \\
\end{align*}
\]

\[0 = H(R^0||c) - H(R^0||c') + (e - e')x\]

So we’d better have $k = H(x||m||c)$!
If k deviates from uniform by any amount, given enough signatures lattice techniques can be used to extract secret keys. (In practice at least a couple bits of bias are needed.)

A malicious manufacturer could insert such bias in a way that only the attacker could detect the deviation.

No way to prove that deterministic randomness was used (general zkps? Hard on typical signing hardware.)
If the hardware device knows c before producing R^0 it can grind k so that $(k + H(R^0||c))$ has detectable bias.

If it doesn’t know c how can it prevent replay attacks?

Send hardware device $H(c)$ and receive R^0 before giving it c.

Then $k = H(x||m||H(c))$.

Multisignatures

- Bitcoin people use “multisignature” in a funny way.
- Includes thresholds (or arbitrary monotone functions of individuals’ keys).
- Do *not* expect or want verifiers to see the original keys, for efficiency and privacy.
Multisignatures

- Plain public-key model.
- May be chosen (from the set of available keys) adversarially and adaptively.
- Keys controlled by inflexible offline signing hardware.
- No good place to store KOSK proofs. No keygen authorities.
- Keys may encode semantics (e.g. Taproot, pay-to-contract) where KOSK is insufficient for security!
Consider Schnorr multisignatures with combined keys of the form $P = \sum P_i$.

Vulnerable to rogue-key attacks where one participant cancels others’ keys.

Bitcoin’s Taproot uses keys of the form $P = P' + H(P'||c)G$ which admits a new form of rogue-key attack.

KOSK cannot protect against the latter!
Multisignatures

- Derandomization of the form $k = H(x || c)$ no longer works.

- In a multi-round protocol need to consider replay attacks, parallel attacks, VM forking, etc.

- General ZKPs can save us here. More R&D needed.
Threshold Signatures and Accountability

- Accountability: ability to prove which specific set of signers contributed to a threshold signature.

- Can we close this gap?
Thank you.

Andrew Poelstra
apoelstra@blockstream.com