NIST

Mational Institute of
Standords and Technology

Combinatorial Methods for
System and Software Testing

Rick Kuhn

National Institute of
Standards and Technology
Gaithersburg, MD

Information Security & Privacy Advisory Board
June 16, 2016

Applications

Software testing — primary application of these methods
e functionality testing and security vulnerabilities
e approx 2/3 of vulnerabilities from implementation faults

Modeling and simulation — ensure coverage of complex cases

* measure coverage of traditional Monte Carlo sim
e faster coverage of input space than randomized input

Performance tuning — determine most effective combination
of configuration settings among a large set of factors

>> systems with a large number of factors that interact <<

Why combinatorial testing? - examples

o Cooperative R&D Agreement w/ Lockheed Martin
o 2.5year study, 8 Lockheed Martin pilot
projects in aerospace software
 Results: save 20% of test costs;
Increase test coverage by 20% to 50%

 Rockwell Collins applied NIST method and
tools on testing to FAA life-critical
standards
 Found practical for industrial use
 Enormous cost reduction

Average software: testing typically 50% of total dev cost
Civil aviation: testing >85% of total dev cost (NASA rpt)

Research areas

Empirical data on software failures
Covering array generation

Combinatorial coverage measurement of input
space

Sequence covering arrays

Oracle-free testing

What is the empirical basis?

e NIST studied software failures in 15 years of
FDA medical device recall data

 What causes software failures?
e logic errors? calculation errors? inadequate|
input checking? interaction faults? Etc.

Interaction faults: e.g., failure occurs if
altitude = 0 && volume < 2.2
(interaction between 2 factors)

So this is a 2-way interaction
=> testing all pairs of values can find this fault

How are interaction faults distributed?

* Interactions e.g., failure occurs if
pressure < 10
pressure < 10 & volume > 300
pressure < 10 & volume > 300 & velocity =5

(1-way interaction)
(2-way interaction)
(3-way interaction)

e Surprisingly, no one had looked at interactions > 2-way before

100

% detected

30

0

0

80 |

70 -

60

50

40 -

N

96% of fai

65% of faults cé

Ults caused

py single factor or 2-way interactions

aused by single factor

20 -

10 |

Interesting, but that's
just one kind of
application!

1

Interaction

Server

Cumulative percent of faults

O e g p———

, =T 0T These faults
wl / more complex
0,7 ' than medical
o0l —/- device

50—/ software!!

40

— o Server

30

20 Why?

10

1 2 3 4 5 6

Number of parameters involved in faults

NIST

Haotienal Institute of
Shandards and Technology

Browser

Cumulative percent of faults

100

90

80

70

60

50

40

30

20

10

F-"7 gty Sk
l’ J/ / - -
4 7 —
/ .
’I’ ,/ /
VA
)/ /
= o« o FDA
//
. e e Browser
//
// — . Server
4
1 2 3 4 5 6

Number of parameters involved in faults

Curves appear
to be similar
across a variety
of application
domains.

NIST

Haotienal Institute of
Shandards and Technology

NASA distributed database

Cumulative percent of faults

100 Y LT XS —f— =
N = — —.-E * o ¢ wm ° ° . .
0 Y N Note: initial
Vi 7 F

wl | testing

Vil
oY / but

- o = o FDA
60
K4

ol /I — =erowser Fault profile
ol ! — - sener better than
w0 | medical

20 devices!

10

1 2 3 4 5 6

Number of parameters involved in faults

NIST

Haotienal Institute of
Shandards and Technology

Cumulative percent of faults

100

90

80

70

60

50

40

30

20

10

7
f / / = = == FDA
V4

e e Browser

— o Server

= = = « NASA DB

Number of parameters involved in faults

NIST

Haotienal Institute of
Shandards and Technology

TCP/IP

Cumulative percent of faults

100

90

80

70

60

50

40

30

20

10

- o o o FDA

e = Browser

— e Server

= = = « NASA DB

=« NW Sec

MySQL

2 3 4 5 6

Number of parameters involved in faults

NIST

Haotienal Institute of
Shandards and Technology

Walt, there’s more

Cumulative proportion of faults fort = 1..6

100 _________________ ;
———— === —
/| === - —=
A i Sl .z /
90 /2 =~ /’/'/, 2z _—
/l / /I//,/ '/
i T
//,/‘ / /;/// -
80 y A— Z
y / AN A A4 :
y ol YAy 4 Ay ANy 4
/ VAR 1A A A
70 / yAYAY 4 a4 .
P 4 7 7 £ 7 7 7
z YAV V4 a4 :
YAV AR,/ 4 a4 7
//// // P
60 A, A 4 G—
/. /1 yany 4 :
i / 4 7
- //// /// .’
L.
/ /) 7/
// / /[
40 y A A A
/ VA AV
y A 4 :
// // //-/
/-
YA 44
// ///.
20 -
V44
/-
10 /-
0
1 4 5
— FDA Browser Server 0 ===-=- DBMS — NW Sec
—_—MySQL =~ ===-- MySQL2 = - = Apache2 —— DSCS NeoKylin

e Number of factors involved in failures is small
 No failure involving more than 6 variables has been seen

How does this knowledge help?

Interaction rule: When all faults are triggered by the
interaction of t or fewer variables, then testing all t-way
combinations is pseudo-exhaustive and can provide
strong assurance.

It is nearly always impossible to exhaustively test
all possible input combinations

The interaction rule says we don’t have to
. _ . e

(within rgasqn, we still have value Still no silver

propagation issues, equivalence bullet. Rats!

partitioning, timing issues, \

more complex interactions, .. .) ﬂ

Let’'s see how to use this in testing.
A simple example:

r.Fu nt @1

Font .Cha[acter Spacing | Text Effects |

Font: ~ Font st_ile: Size:
Times Fegular 1z
Tirmes |aﬂ Reqular ' I_E |m|]i
Times Mew Raman | Tkalic |9 3|
Trebuchet M35 Bold _ 10 |
Tunga () |Bold Italic Ll —
Tw Cen MT v 12]
Font calor: - Undetline skyle: g
Aukornatic |"-"’ | {none |vi
[] Strikethrough [] shadow [] Small caps
[] Double strikethrough Jtline [] &l caps
[] superscript []Emboss [] Hidden
[] subscript []Engrave
m__h_s-_ /

Timnes

This is 2 scalable printer Font, The screen image ray not match printed output,

] [cone NIST

HNational Institute of
Standards and Technelogy

How Many Tests Would It Take?

o There are 10 effects, each can be on or off
« All combinationsis 219 =1,024 tests
« What if our budget is too limited for these tests?

o Instead, let’s look at all 3-way interactions ...

NIST

Notional Institute of
Standards and Technelogy

Now How Many Would It Take?

o There are [130] = 120 3-way interactions.

o Each triple has 23 = 8 settings: 000, 001, 010, 011, ...
e 120 x 8 =960 combinations

« Each test exercises many triples:
A

r A\

0110000110
\Y/\\(/gf—J ~

\ J
Y

[OK, OK, what’s the smallest number of tests we need?gﬂ

A covering array of 13 tests

All triples in only 13 tests, covering [1:,?] 23 = 960 combinations

— AV | S Each column is
Eachrowisatest [O|0]0JO[0l0[0OFO]|O]|0O} a parameter:
T | 1 b1 |1 1T
1[1[1|0]1)0]|0 oo
SIS S ERIC) S R AR,
TTo o030 |1)1|1]ololo
G [1[1y0(0|1 0010y
Olo|1Iyo|1|o|1T (1[0
1/1|0»1|opo|a)jo|1]oO
olo[of1|1p1|OfoO[1]|1y .
O|O0|1|l1|0|O0O|1|0|O]|1 N —
110411001 |0O0|0O | [
1/oflo|lojo|lo|o|1]1]1
ol1|o|lo|op1|1|1|o]|1

e Developed 1990s
e Extends Design of Experiments concept
NP hard problem but good algorithms now NIST

Haotienal Institute of
Stendards and Technology

New algorithms
Smaller test sets faster, with a more advanced user interface
First parallelized covering array algorithm
More information per test

IPOG ITCH (IBM) Jenny (Open Source) TConfig (U. of Ottawa) TVG (Open Source)
T-Way
Size Time Size Time Size Time Size Time Size Time
2 100 0.8 120 0.73 108 0.001 108 >1 hour 101 2.75
3 400 0.36 2388 1020 413 0.71 472 >12 hour 9158 3.07
4 136 — 3.05 1484 400 1536 3.54 1476 >21 hour 64696 127
> ST
5 (4226 | 18s NA 4580 43.54 NA >1 day 313056 1549
N day _
6 109*‘“" 03 NA— >1 day 11625 470 NA >1 day 1070048 12600

Traffic Collision Avoidance System (TCAS): 2732411072

Times in seconds

NIST

Hatienal Institute of
Shandords and Technology

How many tests are needed?

Number of tests: proportional to vt log n for v values, n
variables, t-way interactions

Good news: tests increase logarithmically with the number of
parameters
=> even very large test problems are OK (e.g., 200 parameters)

Bad news: increase exponentially with interaction strength t
=> select small number of representative values (but we always
have to do this for any kind of testing)

However: 10/ B SO O e
* coverage increases 03
0.8
rapidly g 07/

0.6

for 30 boolean variables
33 tests to cover all
3-way combinations
but only 18 tests to
cover about 95% of ,:2 TR E R E EEEE R EE
3-way combinations fest

eXage Rati

> na.

Co

= =
L £ =3
————— e . —_—

=] =]
—_— Fd
-

[}
[|

Testing Inputs — combinations of
variable values

Suppose we have a system with on-off switches.

Software must produce the right response for any
combination of switch settings

Notional Institute of
Standards and Technalogy

How do we test this?

34 switches =23*=1.7x10' possible inputs =17 billion tests

Naotional Institute of
Standards and Technalogy

What if no failure involves more than 3 switch
settings interacting?

34 switches = 17 billion tests
For 3-way interactions, need only 33 tests
For 4-way interactions, need only 85 tests

Notional Institute of
Standards and Technalogy

Cumulative percent of software failures

100 -

90
80
70
60
50
40
30
20
10

o

33 tests for this

(average) range
/ of fault detection

/ 7 / \ |
/ | ___ Medical
/ Devices
A | | —— Browser
, Server
// / | | ——NASA
/ / || = Network
/ ' Security
1 2 8 4 5 6

Number of factors involved in faults

— 85 tests for this
(average) range
of fault detection

That’s way
better than 17
billion!

Available Tools

Covering array generator — basic tool for test input or
configurations;

Input modeling tool — design inputs to covering array
generator using classification tree editor; useful for
partitioning input variable values

Fault location tool — identify combinations and sections of
code likely to cause problem

Sequence covering array generator — new concept; applies
combinatorial methods to event sequence testing
Combinatorial coverage measurement — detailed analysis of
combination coverage; automated generation of supplemental
tests; helpful for integrating c/t with existing test methods

NIST

Motional Institute of
Stendards and Technology

Case study example: Subway control system

Real-world experiment
by grad students, Univ.
of Texas at Dallas

Original testing by
company: 2 months

=, Combinatorial
8y testing by U. Texas
ba students: 2 weeks

- Result: approximately
3X as many bugs found,
In 1/4 the time

=> 12X improvement

Results

Number of Number of | . . o
test cases bugs found Did CT find all original bugs?
Original 98) :
Package 1
- 49 6 Yes
Original 102 1 i
Package 2
el /7 > Yes
Original 116 2 I
Package 3
2l 80 7 Miss 1
Original 122 p) i
Package 4
£ 90 4 Yes

Research question — validate interaction rule?

DOCUMENT

LINK ANCHOR

FORM

TEXT
RADIO
CHECKBOX
TEXTAREA

PASSWORD

SELECT
OPTIONS

BUTTON
RESET

SUBMIT

DOM is a World Wide Web
Consortium standard for
representing and interacting
with browser objects

NIST developed conformance
tests for DOM

Tests covered all possible
combinations of discretized
values, >36,000 tests

Question: can we use the
Interaction Rule to increase
test effectiveness the way we
claim?

NIST

Natienal Institute of
Standords ond Technology

Document Object Model Events
Original test set:

Event Name Param. Tests
Abort 3 12 Load 3 24
Blur 5 24 MouseDown 15 4352
Click 15 4352 MouseMove 15 4352
MouseOut 15 4352
Change 3 12
. MouseOver 15 4352
dbIClick 15 4352
: MouseUp 15 4352
DOMACctivate 5 24 M Wheel 14 1024
DOMAttrModified 8 16 Rouste ee 2 Y
DOMCharacterDataMo 8 64 es_e
oo Resize 5 48
dified scroll 5 48
DOMElementNameCha 6 8 cro
Select 3 12
nged Submit 3 12
DOMFocusin 5 24 T” :“' c o
DOMFocusOut 5 24 ue>|(t ”g”t ; o
DOMNodelnserted 8 128 Wr;moal 15 4096
DOMNodelnsertedintoD 8 128 teIeT t 26606
ocument otal 1ests
DOMNodeRemoved 8 128
DOMNodeRemovedFrom 8 128
Document
DOMSubTreeModified 8 64 . .
Error 3 12 Exhaustive testing of
Focus 5 24 . ng
KeyDown 117 equivalence class values _
Naotienal Institute of
KeyUp 1 17 Stasdards amd Techuology

Document Object Model Events

Combinatorial test set:

Test Results

t Tests : .
Orig. Pass Fail

2 702 1.92% 202 27
3 1342 3.67% 786 27

1818 4.96% 437 (2
<4 1818 7 T2

5 2742 7.49% 908 72

6 4227 1%)'54 1803 72
Yo

All failures found using < 5% of
original exhaustive test set

e == =c 3 C M

e I e T =

100

g0

a0

To

50

250

40

30

20

10

2 3 4 g 5
Interaction strength
Med. Dev. Broweer
_____ S'EF'IEF T TTTTT LT N_JEI.SA
———— NW Sec ———- DOM

Naotienal Institute of
Standords ond Technology

Event Sequence Testing

e Suppose we want to see if a system works correctly regardless
of the order of events. How can this be done efficiently?

e Failure reports often say something like: 'failure
occurred when A started if B is not already connected'.

e Can we produce compact tests such that all t-way sequences
covered (possibly with interleaving events)?

Event | Description
a connect range finder

connect telecom

connect satellite link

connect GPS

connect video
connect UAV

-~ | D | Q| O | T

Sequence Covering Array

* With 6 events, all sequences = 6! =720 tests

e Only 10 tests needed for all 3-way sequences,
results even better for larger numbers of events

e Example: .*c.*f.*b.* covered. Any such 3-way seq covered.

Test
C

H
(@)
O D O 0O 2 O — O

-~ O QO 9 d T O Q — Q9
o ®d O ® 6o —+~ T d d T

d

D O -~ 0 H O -~ D O

®® O ® o -+~ 0O d T T O

Sequence

f
a
C
d
e
b
d
a
' Ner
C Standards and Technology

Seguence Covering Array Properties

e 2-way sequences require only 2 tests (write in any order, reverse)
e For > 2-way, number of tests grows with log n, for n events

e Simple greedy algorithm produces compact test set

e Application not previously described in CS or math literature

Tests

300

250

200

150

100

50

M

/u

; < i < ; < ; > : > . * .

30 40 50 60 70 80

Number of events

== 2-way
== 3-way
== 4-\Way

NIST

Hatienal Institute of
Standards and Technelogy

Combinatorial Coverage

Tests Variables

Variable pairs | Variable-value Coverage
combinations

covered

ac 00, 01, 10 75

bc 00, 11 .50
cd 00, 01, 10, 11 1.0

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

NIST

Naotional Institute of
Stendards ond Technology

Graphing Coverage Measurement

1 Coverage for fie
hgl.csv
09 Total 2-way =0.792
: Cov >=0.00=6%6=1.00
Cov >=0.05=6%=1.00
0.8 Cov>=0.10=6%6=1.00
: Cov>=0.15=6/6=1.00
Cov>=020=6%6=1.00
0.7 Cov>=025=6%=1.00
Cov >=0.30=6%6=1.00
Cov >=0.35=6%6=1.00
0.6 Cov >=0.40=6%6=1.00
o Cov>==045=0%=1.00
= P Cov>=050=66=1.00
5 05 - D Cov >=0.55= 56 = .83
3 — Cov>=060=56=083
R Cov>=065=56=053
0.4 \ Cov>=070=56=083
\ Cov>=075=56=083
0.3 Cov>=0280=26=033
- Cov>=0.85=26=033
Cov>=090=26=033
0.2 Cov>=095=26=033
' Cov>=100=26=033
= away
0.1 Jway
0
0.00 0.10 0.20 0.30 0.40 0.50 a.60 0.70 0.80 0.90 1.00

0.05 0.15 0.25 .35 0.45 2.55 0.85 a.75 0.85 1.85
Combinations

Bottom line:
All combinations
covered to at

least 50%
NIST

Matienal Institute of
Stendards ond Technology

What else does this chart show?

Untested combinations

for problems here)

(look

Tested combinations

Spacecraft software example

82 variables, 7,489 tests, conventional test design
(not covering arrays)

1

|]
%] '
0.9 L
I._ L-I-ll-l L_---ﬁ
0.8 L L L
I_ | N L EEE I-I
0.7 |
II— N N L L
0.6 i |
% I- A E .
¥ 05 |
_ — Dway
0.4 —— day
O 4’1.":'5_,-'
== Hway
0.3 sz
0.2
0.1
0
.00 .10 .20 (.30 .40 .50 .60 0.7
.05 .15 .25 (.35 .45 .55 .65

Application to testing and assurance

e Measurable values with direct relevance to assurance
e Theorem relating (static) combinatorial coverage with
(dynamic) code coverage
e To answer the question:
How thorough is this test set?
We can provide a defensible answer

Examples:

 Fuzz testing (random values) — good for finding bugs
and security vulnerabilities, but how do you know
you’ve done enough?

 Contract monitoring — How do you justify testing has
been sufficient? ldentify duplication of effort?

Oracle-free testing

Some current approaches:

 Fuzz testing — send random values until system fails,
then analyze memory dump, execution traces

e Metamorphic testing — e.g. cos(x) = cos(x+360), so
compare outputs for both, with a difference indicating
an error.

e Partial test oracle —e.g., insert element x in data
structure S, check x € S

New method — using two-layer covering arrays
* requires only definition of equivalence classes

 we envision as part of the tool chain in development

Can this really work on practical code?

Experiment: TCAS code (standard set used to evaluate test methods)
e Small C module, 12 variables
e Seeded faults in 41 variants

e Results:

Primary x faults
secondary detected

3- way X 3-way 285x8 2,280

07048 7760 2

 More than half of faults detected

e Large number of tests -> but fully automated, no human
intervention

e We envision this type of checking as part of the build process;
can be used in parallel with static analysis, type checking

ACTS Users > 2,000 organizations

I Defense

Information
Technology

3 Adrline=s

H Defenzel/govi
O Electronics
O Finance

W Video games
O HVALC

BT

O Language

m Med/'pharma
M Retail'zales
O Telecom

O Tranzportation

NIST

munional Institute of
Standards and Technology

Bottom line: Significant cost savings
and better testing shown in an extensive
variety of application domains

Please contact us
if you’re interested!

Rick Kuhn Raghu Kacker
kuhn@nist.gov raghu.kacker@nist.gov

http://csrc.nist.gov/acts wsr

Maotienal Institute of
Stendards and Technology

