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Applications

Software testing — primary application of these methods
e functionality testing and security vulnerabilities
e approx 2/3 of vulnerabilities from implementation faults

Modeling and simulation — ensure coverage of complex cases

* measure coverage of traditional Monte Carlo sim
e faster coverage of input space than randomized input

Performance tuning — determine most effective combination
of configuration settings among a large set of factors

>> systems with a large number of factors that interact <<



Why combinatorial testing? - examples

o Cooperative R&D Agreement w/ Lockheed Martin
o 2.5year study, 8 Lockheed Martin pilot
projects in aerospace software
 Results: save 20% of test costs;
Increase test coverage by 20% to 50%

 Rockwell Collins applied NIST method and
tools on testing to FAA life-critical
standards
 Found practical for industrial use
 Enormous cost reduction

Average software: testing typically 50% of total dev cost
Civil aviation: testing >85% of total dev cost (NASA rpt)



Research areas

Empirical data on software failures
Covering array generation

Combinatorial coverage measurement of input
space

Sequence covering arrays

Oracle-free testing



What is the empirical basis?

e NIST studied software failures in 15 years of
FDA medical device recall data

 What causes software failures?
e logic errors? calculation errors? inadequate|
input checking? interaction faults? Etc.

Interaction faults: e.g., failure occurs if
altitude = 0 && volume < 2.2
(interaction between 2 factors)

So this is a 2-way interaction
=> testing all pairs of values can find this fault



How are interaction faults distributed?

* Interactions e.g., failure occurs if
pressure < 10
pressure < 10 & volume > 300
pressure < 10 & volume > 300 & velocity =5

(1-way interaction)
(2-way interaction)
(3-way interaction)

e Surprisingly, no one had looked at interactions > 2-way before
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Browser

Cumulative percent of faults
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NASA distributed database

Cumulative percent of faults
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Cumulative percent of faults
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TCP/IP

Cumulative percent of faults
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Walt, there’s more

Cumulative proportion of faults fort = 1..6
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e Number of factors involved in failures is small
 No failure involving more than 6 variables has been seen




How does this knowledge help?

Interaction rule: When all faults are triggered by the
interaction of t or fewer variables, then testing all t-way
combinations is pseudo-exhaustive and can provide
strong assurance.

It is nearly always impossible to exhaustively test
all possible input combinations

The interaction rule says we don’t have to
. _ . e

(within rgasqn, we still have value Still no silver

propagation issues, equivalence bullet. Rats!

partitioning, timing issues, \

more complex interactions, .. .) ﬂ



Let’'s see how to use this in testing.
A simple example:
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How Many Tests Would It Take?

o There are 10 effects, each can be on or off
« All combinationsis 219 =1,024 tests
« What if our budget is too limited for these tests?

o Instead, let’s look at all 3-way interactions ...

NIST
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Now How Many Would It Take?

o There are [130] = 120 3-way interactions.

o Each triple has 23 = 8 settings: 000, 001, 010, 011, ...
e 120 x 8 =960 combinations

« Each test exercises many triples:
A
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[OK, OK, what’s the smallest number of tests we need?gﬂ




A covering array of 13 tests

All triples in only 13 tests, covering [1:,?] 23 = 960 combinations
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New algorithms
Smaller test sets faster, with a more advanced user interface
First parallelized covering array algorithm
More information per test

IPOG ITCH (IBM) Jenny (Open Source) TConfig (U. of Ottawa) TVG (Open Source)
T-Way
Size Time Size Time Size Time Size Time Size Time
2 100 0.8 120 0.73 108 0.001 108 >1 hour 101 2.75
3 400 0.36 2388 1020 413 0.71 472 >12 hour 9158 3.07
4 136 — 3.05 1484 400 1536 3.54 1476 >21 hour 64696 127
> ST
5 ( 4226 | 18s NA 4580 43.54 NA >1 day 313056 1549
N day _
6 109*‘“" 03 NA— >1 day 11625 470 NA >1 day 1070048 12600

Traffic Collision Avoidance System (TCAS): 2732411072

Times in seconds
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How many tests are needed?

Number of tests: proportional to vt log n for v values, n
variables, t-way interactions

Good news: tests increase logarithmically with the number of
parameters
=> even very large test problems are OK (e.g., 200 parameters)

Bad news: increase exponentially with interaction strength t
=> select small number of representative values (but we always
have to do this for any kind of testing)

However: 10/ B SO O e
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Testing Inputs — combinations of
variable values

Suppose we have a system with on-off switches.

Software must produce the right response for any
combination of switch settings

Notional Institute of
Standards and Technalogy




How do we test this?

34 switches =23*=1.7x10' possible inputs =17 billion tests

Naotional Institute of
Standards and Technalogy



What if no failure involves more than 3 switch
settings interacting?

34 switches = 17 billion tests
For 3-way interactions, need only 33 tests
For 4-way interactions, need only 85 tests

Notional Institute of
Standards and Technalogy




Cumulative percent of software failures
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Available Tools

Covering array generator — basic tool for test input or
configurations;

Input modeling tool — design inputs to covering array
generator using classification tree editor; useful for
partitioning input variable values

Fault location tool — identify combinations and sections of
code likely to cause problem

Sequence covering array generator — new concept; applies
combinatorial methods to event sequence testing
Combinatorial coverage measurement — detailed analysis of
combination coverage; automated generation of supplemental
tests; helpful for integrating c/t with existing test methods

NIST
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Case study example: Subway control system

Real-world experiment
by grad students, Univ.
of Texas at Dallas

Original testing by
company: 2 months

=, Combinatorial
8y testing by U. Texas
ba students: 2 weeks

- Result: approximately
3X as many bugs found,
In 1/4 the time

=> 12X improvement



Results

Number of Number of | . . o
test cases bugs found Did CT find all original bugs?
Original 98 ) :
Package 1
- 49 6 Yes
Original 102 1 i
Package 2
el /7 > Yes
Original 116 2 I
Package 3
2l 80 7 Miss 1
Original 122 p) i
Package 4
£ 90 4 Yes




Research question — validate interaction rule?

DOCUMENT

LINK ANCHOR

FORM

TEXT
RADIO
CHECKBOX
TEXTAREA

PASSWORD

SELECT
OPTIONS

BUTTON
RESET

SUBMIT

DOM is a World Wide Web
Consortium standard for
representing and interacting
with browser objects

NIST developed conformance
tests for DOM

Tests covered all possible
combinations of discretized
values, >36,000 tests

Question: can we use the
Interaction Rule to increase
test effectiveness the way we
claim?

NIST
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Document Object Model Events
Original test set:

Event Name Param. Tests
Abort 3 12 Load 3 24
Blur 5 24 MouseDown 15 4352
Click 15 4352 MouseMove 15 4352
MouseOut 15 4352
Change 3 12
. MouseOver 15 4352
dbIClick 15 4352
: MouseUp 15 4352
DOMACctivate 5 24 M Wheel 14 1024
DOMAttrModified 8 16 Rouste ee 2 Y
DOMCharacterDataMo 8 64 es_e
oo Resize 5 48
dified scroll 5 48
DOMElementNameCha 6 8 cro
Select 3 12
nged Submit 3 12
DOMFocusin 5 24 T” :“' c o
DOMFocusOut 5 24 ue>|(t ”g”t ; o
DOMNodelnserted 8 128 Wr;moal 15 4096
DOMNodelnsertedintoD 8 128 teIeT t 26606
ocument otal 1ests
DOMNodeRemoved 8 128
DOMNodeRemovedFrom 8 128
Document
DOMSubTreeModified 8 64 . .
Error 3 12 Exhaustive testing of
Focus 5 24 . ng
KeyDown 117 equivalence class values _
Naotienal Institute of
KeyUp 1 17 Stasdards amd Techuology



Document Object Model Events

Combinatorial test set:

Test Results

t Tests : .
Orig. Pass Fail

2 702 1.92% 202 27
3 1342 3.67% 786 27

1818 4.96% 437 (2
<4 1818 7 T2

5 2742 7.49% 908 72

6 4227 1%)'54 1803 72
Yo

All failures found using < 5% of
original exhaustive test set
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Event Sequence Testing

e Suppose we want to see if a system works correctly regardless
of the order of events. How can this be done efficiently?

e Failure reports often say something like: 'failure
occurred when A started if B is not already connected'.

e Can we produce compact tests such that all t-way sequences
covered (possibly with interleaving events)?

Event | Description
a connect range finder

connect telecom

connect satellite link

connect GPS

connect video
connect UAV

-~ | D | Q| O | T




Sequence Covering Array

* With 6 events, all sequences = 6! =720 tests

e Only 10 tests needed for all 3-way sequences,
results even better for larger numbers of events

e Example: .*c.*f.*b.* covered. Any such 3-way seq covered.

Test
C
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e
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d
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Seguence Covering Array Properties

e 2-way sequences require only 2 tests (write in any order, reverse)
e For > 2-way, number of tests grows with log n, for n events

e Simple greedy algorithm produces compact test set

e Application not previously described in CS or math literature
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Combinatorial Coverage

Tests Variables

Variable pairs | Variable-value Coverage
combinations

covered

ac 00, 01, 10 75

bc 00, 11 .50
cd 00, 01, 10, 11 1.0

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

NIST
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Graphing Coverage Measurement

1 Coverage for fie
hgl.csv
09 Total 2-way =0.792
: Cov >=0.00=6%6=1.00
Cov >=0.05=6%=1.00
0.8 Cov>=0.10=6%6=1.00
: Cov>=0.15=6/6=1.00
Cov>=020=6%6=1.00
0.7 Cov>=025=6%=1.00
Cov >=0.30=6%6=1.00
Cov >=0.35=6%6=1.00
0.6 Cov >=0.40=6%6=1.00
o Cov>==045=0%=1.00
= P Cov>=050=66=1.00
5 05 - D Cov >=0.55= 56 = .83
3 — Cov>=060=56=083
R Cov>=065=56=053
0.4 \ Cov>=070=56=083
\ Cov>=075=56=083
0.3 Cov>=0280=26=033
- Cov>=0.85=26=033
Cov>=090=26=033
0.2 Cov>=095=26=033
' Cov>=100=26=033
= away
0.1 Jway
0
0.00 0.10 0.20 0.30 0.40 0.50 a.60 0.70 0.80 0.90 1.00

0.05 0.15 0.25 .35 0.45 2.55 0.85 a.75 0.85 1.85
Combinations

Bottom line:
All combinations
covered to at

least 50%
NIST

Matienal Institute of
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What else does this chart show?

Untested combinations

for problems here)

(look

Tested combinations



Spacecraft software example

82 variables, 7,489 tests, conventional test design
(not covering arrays)
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Application to testing and assurance

e Measurable values with direct relevance to assurance
e Theorem relating (static) combinatorial coverage with
(dynamic) code coverage
e To answer the question:
How thorough is this test set?
We can provide a defensible answer

Examples:

 Fuzz testing (random values) — good for finding bugs
and security vulnerabilities, but how do you know
you’ve done enough?

 Contract monitoring — How do you justify testing has
been sufficient? ldentify duplication of effort?



Oracle-free testing

Some current approaches:

 Fuzz testing — send random values until system fails,
then analyze memory dump, execution traces

e Metamorphic testing — e.g. cos(x) = cos(x+360), so
compare outputs for both, with a difference indicating
an error.

e Partial test oracle —e.g., insert element x in data
structure S, check x € S

New method — using two-layer covering arrays
* requires only definition of equivalence classes

 we envision as part of the tool chain in development



Can this really work on practical code?

Experiment: TCAS code (standard set used to evaluate test methods)
e Small C module, 12 variables
e Seeded faults in 41 variants

e Results:

Primary x faults
secondary detected

3- way X 3-way 285x8 2,280

07048 7760 2

 More than half of faults detected

e Large number of tests -> but fully automated, no human
intervention

e We envision this type of checking as part of the build process;
can be used in parallel with static analysis, type checking
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Bottom line: Significant cost savings
and better testing shown in an extensive
variety of application domains

Please contact us
if you’re interested!

Rick Kuhn Raghu Kacker
kuhn@nist.gov raghu.kacker@nist.gov

http://csrc.nist.gov/acts  wsr

Maotienal Institute of
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