

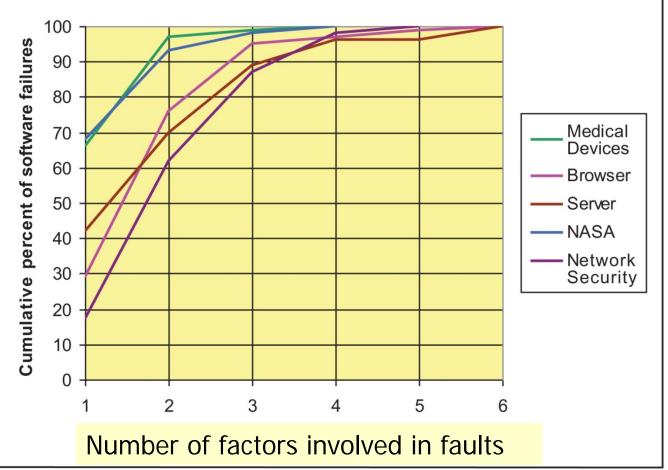
Combinatorial Testing

Rick Kuhn
NIST Computer Security Division

NIST Combinatorial Testing

- Applying empirical results to reduce the cost of testing.
- Example: 2.5 year study ~ 20% lower test development cost and 20% - 50% better coverage (more on this later)
- Tutorial obtained by > 21,000 people; Tools in > 1,200 organizations
- Joint research with many organizations

Software Failure Analysis


- NIST studied software failures in a variety of fields
- How many factors involved in software failures?
 2 factors

Example medical device failure analysis:

Failure when "altitude adjustment set on 0 meters and total flow volume set at delivery rate of less than 2.2 liters per minute."

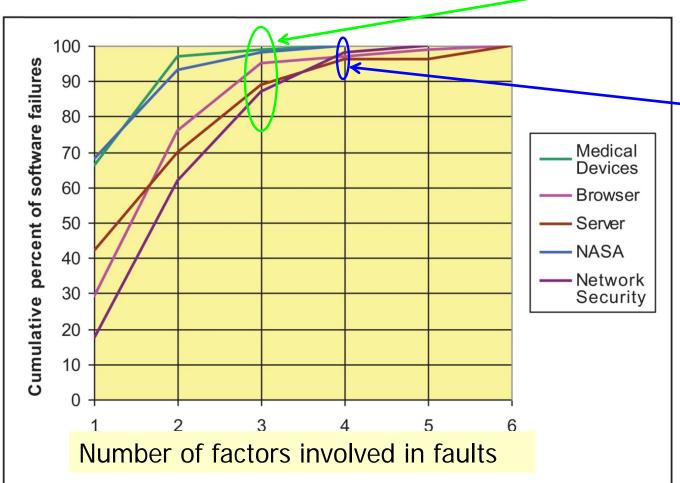
- Number of factors involved in failures is small
- New algorithms make it <u>practical</u> to test these combinations
- We test large number of combinations with very few tests

How do we use this knowledge?

Ex: 34 switches = 2^{34} = 1.7 x 10^{10} possible inputs

= 17 billion tests for all combinations – impossible

So how much testing do we need?
How much testing can we afford?



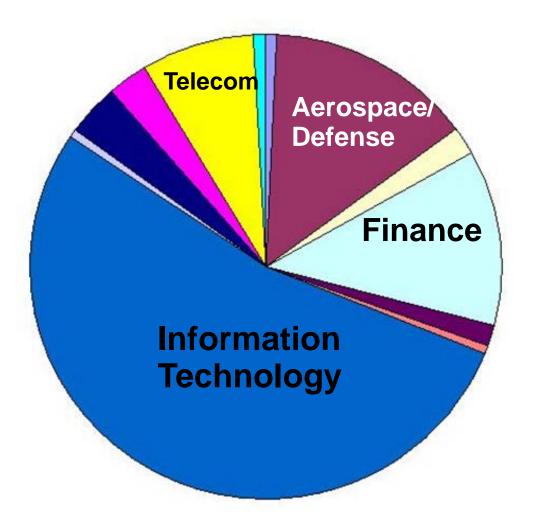
- Recall key finding that a small number of factors are involved in failures
- How well can we compress combinations into a small number of tests?
- For 3-way interactions, need only 33 tests
- For 4-way interactions, need only 85 tests
- 5-way interactions, 213 tests
- 6-way interactions, 522 tests

33 tests for this range of fault detection

85 tests for this range of fault detection

That's way better than 17 billion!

Technology Applications


- Greatest use in IT hardware and software; networks, cloud, transaction processing
- Strong adoption for <u>aerospace</u> and <u>financial</u> systems
- Good for detecting <u>inputs</u> that cause failures, or <u>configurations</u> that lead to problems

ACTS Users - industries

software with

- high complexity
- high risk

Commercial Applications

- Software testing
- Large system hardware/software eval
- Integrated circuit testing
- Product lines and highly configurable software
- Modeling and simulation
- Example: 2.5 year evaluation in one of the world's largest defense firms, across multiple business areas: Better fault detection/analysis effectiveness & 20% lower test development cost

Collaboration Opportunities

- Software is freely distributed in binary; plan to make it open source
- Products built from NIST software
- Many companies use it in consulting and contract testing
- See csrc.nist.gov/acts

Summary

- Analyzed failure causes in real-world systems: few variables interacting (none > 6 seen)
- Developed advanced algorithms to efficiently compress tests based on this finding
- Demonstrated effectiveness in large, complex real-world systems: better testing, test development cost reduction about 20% (testing is typically half of total s/w cost)

Contact Information

For further information contact:

Jack E. Pevenstein, NIST

Technology Transfer Advisor

Technology Partnership Office

301-975-5519

Jack.pevenstein@nist.gov