Compact-LWE: Lattice-based PKE without Concretely Relying on the Hardness of Lattice Problems

Dongxi Liu Nan Li Jongkil Kim Surya Nepal
9 April 2018
Contents in Submitted Specification

- Private Key Recovery
- Ciphertext-Only Attack
- Security and Attack Analysis
- Performance Evaluation
- Hardness Discussion
- Compact-LWE Public Key Encryption (PKE)
- Compact-LWE Problem
Security Problem

- Ciphertext-only attacks to Compact-LWE PKE can be true
 - Found by Pan et al., and Boole et al.
 - A countermeasure provided below

- Hardness of Compact-LWE problem not affected
Outline

- Compact-LWE problem and its hardness
- Compact-LWE PKE
 - key generation, encryption, decryption
 - an instance (parameters, sizes of keys and ciphertexts)
- Explanation of Ciphertext-only Attack
- Countermeasure: Revision to Compact-LWE PKE
- Advantages
Compact-LWE problem

- Secret values: \(s, s' \in \mathbb{Z}_q^n, k, k' \in \mathbb{Z}_q, ck, ck' \in \mathbb{Z}_p, \) and \(p < q \)
 - All values randomly sampled from uniform distributions
- Compact-LWE samples
 - \((a_i, \langle a_i, s \rangle + k \ast (r_i + p \ast e_i)) \mod q, \langle a_i, s' \rangle + k' \ast (r'_i + p \ast e'_i) \mod q\)
 - \(r_i, r'_i \in \mathbb{Z}_p, \) satisfying \(ck \ast r_i + ck' \ast r'_i = 0 \mod p \)
 - \(e_i, e'_i \) are small error values
 - \(a_i \in \mathbb{Z}_b^n, \) with \(b \leq q \)
- Compact-LWE problem
 - finding secret values from Compact-LWE samples
Hardness of Compact-LWE Problem

- A LWE sample is a Compact-LWE sample with $k = 1$, $k' = 1$, $p = 1$, $ck = 0$, $ck' = 0$, and $b = q$.
- Smaller b makes Compact-LWE resistant to lattice-based attacks to recover original s or s'.
Compact-LWE PKE

- Public parameters: nine positive integers
 - $q, t, n, m, w, w', b, b', l$
- Generation of private keys
 - Private parameters: $sk_{max}, p_{size}, e_{min},$ and e_{max}
 - Private key: $(s, k, sk, ck, s', k', sk', ck', p)$
 - $p \in \{(w + w') * b', ..., (w + w') * b' + p_{size}\}$
 - p coprime with q and
 - $sk_{max} * b' + p + e_{max} * p < q / (w + w')$
 - $sk, sk' \in \mathbb{Z}_{sk_{max}}$, satisfying $sk * ck + sk' * ck'$ coprime with p
Compact-LWE PKE

- Generation of public keys
 - m public key samples (a_i, u_i, pk_i, pk'_i)
 - $pk_i = \langle a_i, s \rangle + k_q^{-1} \times (sk \times u_i + r_i + e_i \times p) \mod q$
 - $pk'_i = \langle a_i, s' \rangle + k'_q^{-1} \times (sk' \times u_i + r'_i + e'_i \times p) \mod q$
 - $u_i \in \mathbb{Z}_{b_i}$, $e_i \in [e_{\text{min}}, e_{\text{max}}]$, and $e'_i \in [e_{\text{min}}, e_{\text{max}}]$

- Encryption
 - basic encryption: only encrypting messages in \mathbb{Z}_t
 - general encryption: relying on basic encryption to encrypt long messages
Compact-LWE PKE: Basic Encryption

- Generate the m-dimensional random vector l, such that
 - $w \leq \sum_{i=1}^{m} l[i] \leq w + w'$ for all $l[i] > 0$
 - $-w' \leq \sum_{i=1}^{m} l[i] \leq 0$ for all $l[i] < 0$
 - $\sum_{i=1}^{m} l[i] \cdot u_i > 0$

- Generate the ciphertext c
 - $(\sum_{i=1}^{m} l[i] \cdot a_i, f(v, \sum_{i=1}^{m} l[i] \cdot u_i), \sum_{i=1}^{m} l[i] \cdot pk_i \mod q, \sum_{i=1}^{m} l[i] \cdot pk'_i \mod q)$
 - where
 \[
 f(v, \sum_{i=1}^{m} l[i] \cdot u_i) = (v \oplus \text{rol}(u, \log_2(t)/2)) \cdot u' \mod t,
 \]
 \[
 u = (\sum_{i=1}^{m} l[i] \cdot u_i) \mod t, \text{ and}
 \]
 \[
 u' \geq (\sum_{i=1}^{m} l[i] \cdot u_i)/t \text{ is the smallest integer coprime with } t.
 \]
Compact-LWE PKE: Basic Decryption

- Let $c = (a, d, pk, pk')$ be the ciphertext.
- With the private key, v is recovered by using the steps below:
 - Calculate $d_1 = (pk - \langle a, s \rangle) \ast k \mod q$, and $d'_1 = (pk' - \langle a, s' \rangle) \ast k' \mod q$.
 - Let $d_2 = ck \ast d_1 + ck' \ast d'_1 \mod p$.
 - Calculate $d_3 = sckInv \ast d_2 \mod p$, where $sckInv$ is determined by $sckInv \ast (sk \ast ck + sk' \ast ck') = 1 \mod p$.
 - Obtain $v = f^{-1}(d, d_3)$, where

$$f^{-1}(d, d_3) = (u_p'^{-1} \ast d \mod t) \oplus \text{ro}(u, \log_2(t)/2),$$

$$u = d_3 \mod t,$$

$u' \geq d_3/t$ is the smallest integer coprime with t, and

$$u_p'^{-1} \ast u' = 1 \mod t.$$
An Instance: parameters

- 192-bit search space for private keys

<table>
<thead>
<tr>
<th>q</th>
<th>t</th>
<th>n</th>
<th>m</th>
<th>w</th>
<th>w'</th>
<th>b</th>
<th>b'</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{64}</td>
<td>2^{32}</td>
<td>8</td>
<td>128</td>
<td>224</td>
<td>32</td>
<td>16</td>
<td>68719476736</td>
<td>8</td>
</tr>
</tbody>
</table>

Table: Public Parameters

<table>
<thead>
<tr>
<th>sk_{max}</th>
<th>p_{size}</th>
<th>e_{min}</th>
<th>e_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>229119</td>
<td>16777216</td>
<td>457</td>
<td>3200</td>
</tr>
</tbody>
</table>

Table: Private Parameters
An Instance: sizes and performance

- 232 bytes for a private keys and 2064 bytes for a public key

<table>
<thead>
<tr>
<th>Message (B)</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciphertext (B)</td>
<td>360</td>
<td>648</td>
<td>1224</td>
<td>2376</td>
<td>4680</td>
<td>9288</td>
</tr>
</tbody>
</table>

Table: Ciphertext Size

<table>
<thead>
<tr>
<th>Message (B)</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enc (sec)</td>
<td>1.29</td>
<td>2.15</td>
<td>4.36</td>
<td>7.56</td>
<td>14.81</td>
<td>28.7</td>
</tr>
<tr>
<td>Dec (sec)</td>
<td>0.18</td>
<td>0.27</td>
<td>0.43</td>
<td>0.88</td>
<td>1.78</td>
<td>3.50</td>
</tr>
</tbody>
</table>

Table: Performance of 100000 Encryptions and Decryptions

- Note that the evaluation will change in the revised version of Compact-LWE encryption scheme.
Explanation of Ciphertext-only Attack

- Given ciphertext \(c = (a, d, pk, pk') \), we have

 \[
 a = \sum_{i=1}^{m} l[i] \ast a_i \\
 pk = \sum_{i=1}^{m} l[i] \ast pk_i \mod q \\
 pk' = \sum_{i=1}^{m} l[i] \ast pk'_i \mod q \\
 d = f(v, \sum_{i=1}^{m} l[i] \ast u_i)
 \]

- From the first three equations, a short vector \(l' \) can be obtained.

- The ciphertext-only attack can succeed, due to

 \[
 \sum_{i=1}^{m} l[i] \ast u_i = \sum_{i=1}^{m} l'[i] \ast u_i.
 \]
Compact-LWE PKE - revised

- Changes indicated in red.
- Public parameters: ten positive integers
 - \(q, t, n, m, w, w', b, b', l, n' \)
- Generation of private keys
 - Private parameters: \(sk_{max}, p_{size}, e_{min}, \) and \(e_{max} \)
 - Private key: \((s, k, sk, ck, s', k', sk', ck', p, s'')\)
 - \(p \in \{(w + w') \cdot b', ..., (w + w') \cdot b' + p_{size}\} \)
 - \(p \) coprime with \(q \) and \(p + p + e_{max} \cdot p < q/(w + w') \)
 - \(sk, sk' \in \mathbb{Z}_p \), satisfying \(sk \cdot ck = sk' \cdot ck' \) and \(sk \cdot ck \) coprime with \(p \)
 - \(s'' = (s''[1], ..., s''[n']) \in \mathbb{Z}_{b'}^n \), with \(s''[1] \) and \(s''[2] \) co-prime with \(b' \)
Compact-LWE PKE - revised

- Generation of public keys
 - m public key samples (a_i, a'_i, pk_i, pk'_i)
 - $pk_i = \langle a_i, s \rangle + k_q^{-1} \times ((sk \times u_i \text{ mod } p) + r_i + e_i \times p) \text{ mod } q$
 - $pk'_i = \langle a_i, s' \rangle + k'_q^{-1} \times ((sk' \times u'_i \text{ mod } p) + r'_i + e'_i \times p) \text{ mod } q$
 - $u_i, u'_i \in \mathbb{Z}_p$, and $(u_i + u'_i) \text{ mod } p \in \mathbb{Z}_{b'}$
 - $e_i \in [0, e_{\text{max}}]$, and $e'_i \in [0, e_{\text{max}}]$
 - $a'_i \in \mathbb{Z}_{b'}$, and $\langle a'_i, s'' \rangle = ((u_i + u'_i) \text{ mod } p) \text{ mod } b'$
 - Let $s2'' = (s''[1] \times s''[1], ..., s''[n'] \times s''[n']) \in \mathbb{Z}_{b'}^{n'}$.
 - For $1 \leq i < j \leq n'$, $a''_{ij} \in \mathbb{Z}_{b'}$ are included in the public key,
 - Satisfying $\langle a''_{ij}, s2'' \rangle = s''[i] \times s''[j] \text{ mod } b'$

- Encryption
 - basic encryption: only encrypting messages in \mathbb{Z}_t
 - general encryption: relying on basic encryption to encrypt long messages
Compact-LWE PKE: Basic Encryption - revised

• Generate the m-dimensional random vector l, such that
 - $w \leq \sum_{i=1}^{m} l[i] \leq w + w'$ and $l[i] > 0$ for $1 \leq i \leq m$
 - $-w' \leq \sum_{i=1}^{m} l[i] \leq 0$ for all $l[i] < 0$
 - $\sum_{i=1}^{m} l[i] \ast u_i > 0$

• Generate the ciphertext c
 - $(\sum_{i=1}^{m} l[i] \ast a_i, a', f(v, u), \sum_{i=1}^{m} l[i] \ast pk_i \mod q, \sum_{i=1}^{m} l[i] \ast pk'_i \mod q)$, where
 - u randomly sampled from $\mathbb{Z}_{b'}$
 - let $(a_1, ..., a_{n'}) = \sum_{i=1}^{m} l[i] \ast a'_i$
 - $a' = (a_1^2, ..., a_{n'}^2) + \sum_{i=1}^{n'-1} \sum_{j=i+1}^{n'} 2 \ast a_i \ast a_j \ast a''_{ij} + u \ast a''_{12} \in \mathbb{Z}_{b'}$
 - no change to f

• More random u (e.g., $u' \ast a_{13} + u'' \ast a_{14} + ...$) can be added into a' if general encryption and decryption are also revised.
Compact-LWE PKE: Basic Decryption - revised

- Let \(c = (a, a', d, pk, pk') \) be the ciphertext.
- With the private key, \(v \) is recovered by using the steps below:
 - Calculate \(d_1 = (pk - \langle a, s \rangle) \cdot k \mod q \), and \(d_1' = (pk' - \langle a, s' \rangle) \cdot k' \mod q \).
 - Let \(d_2 = ck \cdot d_1 + ck' \cdot d_1' \mod p \).
 - Calculate \(d_3 = sckInv \cdot d_2 \mod p \), where \(sckInv \) is determined by \(sckInv \cdot (sk \cdot ck + sk' \cdot ck') = 1 \mod p \).
 - Let \(s2'' = (s''[1] \cdot s''[1], ..., s''[n'] \cdot s''[n']) \in \mathbb{Z}_{b'}^{n'} \).
 - Calculate \(u = (s''[1] \cdot s''[2])^{-1} \cdot (\langle a', s2'' \rangle - d_3 \cdot d_3) \mod b' \).
 - Obtain \(v = f^{-1}(d, u) \).
Evaluation of Countermeasure

- Implementation of basic encryption and decryption in Sage.
- \((n' - 1) \times \log_2 b'\) should be greater than the declared security level.
 - \(n' = 6\) and \(b' = 2^{39}\) used in our evaluation (5 \times 39 > 192)
- \(n' - 1\) elements in \(a'_i\) are independently and randomly sampled.
 - The idea of ciphertext-only attack explained before is not applicable.
 - i.e., \(\sum_{i=1}^{m} l[i] \times a'_i \neq \sum_{i=1}^{m} l'[i] \times a'_i\) when \(n' > 1\).
- \(b'\) must be a composite number.
 - \(\mathbb{Z}_{b'}\) is not a field, and thus \(s''\) cannot be recovered from \(a''_{ij}\) by solving MQ equations.
 - \(a''_{ij}\) is used to reduce ciphertext size; i.e., without \(a''_{ij}\), ciphertexts become bigger.
Advantages

- Simple to understand and implement
 - Constructed with integers and modular arithmetic
 - All random values sampled from uniform distribution
- Assuming hard problems in lattices can be efficiently solved, with small parameters (e.g., n=8) selected
 - Detect design flaws if there are easily with concrete attacks (good for preventing deeply hidden design flaws)
 - Mitigate the impact when hard problems in lattices become not hard in future
- Relatively small ciphertexts
 - A ciphertext has about 700 bytes for a 32-byte message in the revised version.