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Lattice Cryptography



Easy Problem

3

A y z

Given (A,z), find y

Easy! Just invert A and multiply by z

mod p



Hard Problem

4

A ey z

Small coefficients to enforce uniqueness

Given (A,z), find (y,e)

Seems hard (would have many positive non-
cryptographic applications if it were easy).  

mod p



Hard Problem

5

Given (A,z), find (y,e)

Seems hard.  
Even when A is over Zp[X]/(f(X)) for certain f(X).

mod p



Why is this “Lattice” Crypto?
All solutions 𝒚𝒚𝒆𝒆 to Ay+e=z mod p form a “shifted” lattice.

We want to find the point closest to the origin  (BDD Problem).



Brief History

• Lattices studied algorithmically at least since 1982 (LLL)

• Algebraic lattices since at least 1996 (NTRU)

• Lattices over Zp[X]/(Xn+1) since at least 2008 (SWIFFT)

• Last 10 years – one of the hottest area in cryptography. Lots of 
attention and some interesting algorithms discovered

But … 0 attacks against lattice crypto based on (Module-) SIS / LWE

 Parameters were increased (around 50%) due to conservative 
considerations of “sieving” attacks requiring exponential space



CRYSTALS Math



Operations

Only two main operations needed (and both are very fast):

1. Evaluations of SHAKE256 (can use another XOF too)
2. Operations in the polynomial ring  R = Zp[X]/(X256+1)

prime p = 213 – 29 + 1  (for Kyber) 
prime p = 223 – 213 + 1 (for Dilithium)

Very easy to adjust security because the same 
hardware/software can be reused



Ring Choice Rationale

• 256-dimensional rings are “just right”
Large enough to efficiently encrypt 256-bit keys
Allow for a large enough challenge space for signatures
Allow for enough “granularity” to get the security we 

want

• Zp[X]/(Xn+1), for a prime p, has been the 
most widely-used ring in the literature
Very easy to use and the most efficient one
Has a lot of properties that are useful in more advanced 

constructions



Basic Computational Domain:
Polynomial ring Zp[x]/(x256+1)

Operations used in the schemes:

small coefficients

Operations



Modular Security

768-dim

1024-dim

to increase the security margin

Just do more of the same operation
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[Lyu ‘09]
“Fiat-Shamir with Aborts” 

Digital Signature 

[GLP ‘12]
[BG ‘14]

Signature Compression

Dilithium
Public Key + Signature 

Compression

[HHPSW ‘03]
Use NTRU trapdoor for 

Signatures

[GPV ‘08]
Made it Secure via 
Gaussian Sampling

FALCON
BLISS [DDLL ‘13]

Bimodal Gaussian 
Sampling

[Lyu ‘12]
Gaussian Rejection 

Sampling
SIS + LWE Based

Based on NTRU
Uses Discrete Gaussian Sampling

Based on (Module-) LWE / SIS
Uses Uniform Sampling

Additionally useful for IBE Additionally useful for ZK-Proofs

Signature Size

Digital Signatures 
Overview



Signatures with Uniform Sampling  
[Lyu ‘09]  …  [BG ‘14]

Public key 
A:=XOF(seed)

uniform mod p

Public key 
t:=As1+s2

Secret key
s1, s2 with 

coefficients in {-5,…,5}



As1+s2=t
Sign(μ)

y Coefficients in [-γ, γ]
c := H(high(Ay), μ)
z := y + cs1
If |z| > γ – β or |low(Ay - cs2)|> γ – β

restart
Signature = (z, c)

Verify(z, c, μ)

Check that |z| ≤ γ – β
and

c=H(high(Az - ct) , μ)

Ay - cs2

Signatures with Uniform Sampling  
[Lyu ‘09]  …  [BG ‘14]

Needed for security



As1+s2=t
Sign(μ)

y Coefficients in [-γ, γ]
c := H(high(Ay), μ)
z := y + cs1
If |z| > γ – β or |low(Ay - cs2)|> γ – β

restart
Signature = (z, c)

Verify(z, c, μ)

Check that |z| ≤ γ – β
and

c=H(high(Az - ct) , μ)

Ay - cs2

Because |low(Ay - cs2)| ≤ γ – β,      high(Ay - cs2) = high(Ay)

Signatures with Uniform Sampling  
[Lyu ‘09]  …  [BG ‘14]

Needed for correctness

max(|cs2|)



As1+s2=t0+bt1

Sign(μ)

y Coefficients in [-γ, γ]
c := H(high(Ay), μ)
z := y + cs1
If |z| > γ – β or |low(Ay - cs2)|> γ – β

restart
Signature = (z, c)

Verify(z, c, μ)

Check that |z| ≤ γ – β
and

c=H(high(Az - cbt1) , μ)

Ay - cs2 + ct0

Want high(Ay - cs2) = high(Ay - cs2 + ct0)

Chopping off Low-Order PK bits



The Carry Hint Vector

Want high(Ay - cs2) = high(Ay - cs2 + ct0)

The signer knows   Ay - cs2 + ct0   and   ct0

The verifier knows Ay - cs2 + ct0

Ay - cs2 + ct0

- ct0

Ay - cs2

High Bits Low Bits High Bits

Carry bit

Each 23-bit coefficient



Dilithium
(high-level overview)

As1+s2=t0+bt1Sign(μ)

y Coefficients in [-γ, γ]
c := H(high(Ay), μ)
z := y + cs1
If |z| > γ – β or |low(Ay - cs2)|> γ – β

restart
Create carry bit hint vector h
Signature = (z, h, c)

Verify(z, c, μ)

Check that |z| ≤ γ – β
and

c=H(high(h “+” Az - cbt1) , μ)

high(Ay - cs2)
Hint h 
• adds 100 – 200 bytes to the signature
• Saves ≈ 2KB in the public key



Parameters for CRYSTALS-Dilithium
( > 128-bit quantum security)

5 x 4 matrices 6 x 5 matrices

Public Key ≈ 1.5 KB ≈ 1.8 KB

Signature ≈ 2.7 KB ≈ 3.4 KB
Public key generation / verification:  > 10,000 per second
Signing :  > 3,000 per second



Security Reductions



Signature Scheme Security
(Proof framework for Fiat-Shamir Schemes in the ROM)

Real Signature 
Scheme

1. A1 gets the public key 
and access to hash H

2. A1 asks signature 
queries

3. A1 forges a signature

Hybrid 1

1. A2 gets the public key 
and access to hash H

2. A2 forges a signature

≤

• Reduction in the QROM [Unr ‘17]
• Tight reduction in the QROM if the 

signing is deterministic [KLS ‘18]

InteractiveNon-Interactive

Math Problem ≤

Non-Interactive
and no hash H

1. A3 gets math problem
2. A3 solves math problem



Dilithium Security

Input:  random A, t, and an XOF H
Output: short s1, s2, c and μ such that 

H(As1 + s2 - tc, μ) = c

Input: random A, t
Output: short s1, s2 and c such that 

As1 + s2 - tc =0 ≤

Non-tight reduction in the 
ROM using rewinding

(Module)-SIS + (Module)-LWE Hybrid 1 (Self-Target SIS)

Tight in the QROMNon-tight in the ROM



The Same as Schnorr Signatures

Input:  random A, t, and an XOF H
Output: short s1, s2, c and μ such that 

H(As1 + s2 - tc, μ) = c

Input: random A, t
Output: short s1, s2 and c such that 

As1 + s2 - tc =0 ≤
(Module)-SIS + (Module)-LWE Hybrid 1 (Self-Target SIS)

Tight in the QROMNon-tight in the ROM

Input:  random g, h, and an XOF H
Output: x, c and μ such that 

H(gx hc, μ) = c

Input: random g,h
Output:  x, c such that 

gxhc = 1 ≤
Discrete Log “Self-Target Discrete Log”



Is the “Self-Target” Assumption 
Worrisome in the QROM?

• We believe not

• No example where using “rewinding” in the proof 
left the scheme vulnerable to a quantum attacker 

• Analogous to computationally-binding classical 
commitments not having a proof in the QROM 

(and there is no NIST competition for post-quantum 
commitments)  



Base on (Module-)LWE in the QROM?

recommended high

Public Key ≈ 1.5 KB ≈ 1.8 KB

Signature ≈ 2.7 KB ≈ 3.4 KB

recommended high

Public Key                    5X larger ≈ 7.7 KB ≈ 9.6 KB

Signature                     2X larger ≈ 5.7 KB ≈ 7.1 KB

Also significantly ( > 10X) slower

Dilithium

“Katz-Wang” Tight Dilithium [AFLT ‘12, ABB+ ‘15, Unr ‘17, KLS ‘18] 



Basis for Our Parameter Settings

LWE parameters (i.e. secret key recovery) 
used the recently en vogue sieving analysis

SIS parameters (i.e. message forgery) –
the same analysis + improved (potential) algorithm 
for  l∞ - SIS



Possible Trade-Offs
(open to community suggestions)

• Smaller secret key coefficients e.g. {-5,…,5}  {-1,0,1}
• Signatures will be smaller
• Makes combinatorial hybrid attacks more likely and gets further away from 

WC-AC parameters 

• Module-LWE Module-LWR
• (Maybe) a slight reduction in the key size
• Probably nothing goes wrong with security if sk coefficients are large enough

• Increase the rejection probability
• Slower, but smaller signatures
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