
DevOps and Container

Security

Paul Cichonski
Cloud Architect

Lancop

Mike Bartock
IT Specialist

NIST

John Morello
Chief Technology Officer

Twistlock

Raghu Yeluri
Principal Engineer

Intel

Certain commercial entities, equipment, or materials may be identified in this

document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by

NIST, nor is it intended to imply that the entities, materials, or equipment are

necessarily the best available for the purpose.

Agenda

• Introductions

• Purpose of the Panel

• Panelist Container Work

• Intel

• Twistlock

• Lancope

• Discussion on container security and applications

• Questions from the Audience

Purpose

• Introduction to containers and their uses

• Different methods of security for containers

• Discussion of what industry is doing

Raghu Yeluri

Principal Engineer, Lead Cloud Security Architect

Datacenter Group, Intel Corporation

Trusted Containers

Legal Information
Intel technologies, features and benefits depend on system configuration and may require enabled hardware, software or service activation.

Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or

retailer or learn more at intel.com.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel

microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the

availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in

this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered

by this notice. Notice Revision #20110804

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose,

and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without

notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current

characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting

www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel vPro, Look Inside., the Look Inside. logo, Intel Xeon Phi, and Xeon are trademarks of Intel Corporation in the U.S. and/or other

countries.

*Other names and brands may be claimed as the property of others.

© 2015 Intel Corporation.

Containers
Lightweight, fast, disposable virtual

environments

 App portability, maintenance and deployment.

Technically:

 Set of processes running atop shared kernel

 Isolated from rest of the system (limitations)

From a distance… looks like a VM (SSH, root

access, eth0, mount file systems)

Have been around for 10+ years (Solaris*

containers, Linux* Containers..)

Efficient way to build, ship, run, deliver apps

Hardware

Operating System

Hypervisor

VM

Operating

System

Bins / libs

A

p

p

A

p

p

VM

Operating

System

Bins / libs

A

p

p

A

p

p

Hardware

Hypervisor

VM

Operating

System

Bins / libs

A

p

p

A

p

p

VM

Operating

System

Bins / libs

A

p

p

A

p

p

Hardware

Operating System

Container

Bins / libs

A

p

p

A

p

p

Container

Bins / libs

A

p

p

A

p

p

Type 1 Hypervisor Type 2 Hypervisor Linux Containers

VMs Containers

 Docker* Containers commoditized Linux Containers

What is Docker*?

Lightweight, open source engine for creating, deploying containers

 Provides work flow for running, building and containerizing apps.

 Separates apps from where they run; enables Micro-services; scale by

composition

 Underlying building blocks: Linux* kernel's namespaces (isolation) + cgroups

(resource control) + ..

Components of Docker*

 Docker Engine: Runtime for running, building Docker containers

 Docker Repositories(Hub): SaaS for sharing/managing images

 Docker Images (layers)

– Images hold Apps. Shareable snapshot of software. Container is a running instance of

image.

Orchestration: OpenStack*, Docker Swarm, Kubernetes*, Mesos*, CoreOs

Tectonic, Fleet

Docker* Hub

Docker* Layers

Container Security – Key Customer Asks
1. Docker* Host Integrity

 Do you trust the Docker daemon?

 Do you trust the Docker host has booted with Integrity?

2. Docker Container Integrity verification

 Who wrote the container image? Do you trust the image? Did the right Image get launched?

3. Runtime Protection of containers & Enhanced Isolation

 How can Intel help with runtime Integrity, Isolation?

4. Intelligent orchestration – OpenStack as singular control plane for Trusted VMs

and Containers

 Intel’s Focus: Hardware-based Integrity Assurance for Containers –

Trusted Docker Containers

Trusted Docker* Containers – 3 Focus Areas

Launch Integrity of Docker* Host & Docker Engine

Integrity of Docker Images & Containers

Looking ahead…Runtime Integrity of Docker Host, H/w-based enhanced

Isolation

Trusted VMs - Summary

Launch VMs on Servers with demonstrated Boot

Integrity – Trusted Boot

Chain of Trust to VMs – Trusted VMs

Control where Trusted VMs are launching and

migrating: Boundary Control of VMs

Measurements done at the time of boot

 (Server boot and VM Launch)

Host OS/Hypervisor
Kernel, Initrd++

HW w/ Intel TXT/TPM

App App

VM-1 VM-2

 vRTM

 Tboot

Measurements match!

System & VMs Trusted

Trust Boundary

Trust Boundary

Trusted Platform Module (TPM)

Intel® Trusted Execution Technology (Intel® TXT)

 Enable same model and use-cases for Trusted Containers

Trusted Docker* Containers - 1

Ensure Docker* Containers are launched on Trusted

Docker Hosts

Boot-time integrity of the Docker Host
 Measured Launch of Boot Process and components

with Intel® Trusted Execution Technology (Intel® TXT)

Docker daemon and associated components added

to TCB and Measured

Chain of Trust: H/W → FW → BIOS → OS →

Docker Engine

Remote attestation using Intel Cloud Integrity

Technology (Attestation Authority)

Host OS

HW with Intel TXT

Docker Daemon

Container

B

e.g.

Apache v2

Container

C

e.g.

Nginx*

Container

A

e.g.

Apache*

TPM
TBOOT

Docker Host Platform Integrity

Shared Bin/Libs

Trust

Boundary

 Assure and attest the Integrity of Docker host/platform

Trusted Docker* Containers - 2

Ensure that Docker* Images not tampered prior to Launch

Two Models:

1. Measure and verify Docker images, Chain of Trust: H/W → FW →

BIOS → OS → Docker Engine → Docker image layers

2. Sign images in Docker Hub. Verify images signature prior to launch with

root Cert signature that is ‘Sealed’ to Intel® Trusted Execution

Technology (Intel® TXT) measurements in the Trusted Platform Module

(TPM). – Can work with Notary* - Docker Content Trust Model.

Boundary Control/Geo-Tagging applies equally to Docker

Containers as well for compliance needs

• Orchestrator determines location/boundary at launch time

Host OS

HW with Intel TXT

Docker Daemon

Container

B

e.g.

Apache v2

Container

C

e.g.

Nginx*

Container

A

e.g.

Apache*

TPM
TBOOT

Docker Host & Container
Launch Integrity

Shared Bin/Libs

Agents

}
 Assure and attest the Integrity of Docker images/containers

How about Docker* Containers in VMs?

Leverage Trusted VMs for asserting trust of the

host, and the VMs.

Include Docker* Daemon as part of VMs TCB –

measure and verify Docker Daemon as part of

VM launch attestation.

Boot-time integrity of Host + VMM

Integrity assurance of VM and Docker Daemon

Chain of Trust: H/W → FW → BIOS-OS/VMM-

VM → Docker Engine

Measurements done at the time of boot

 (Server boot and VM Launch)

Host OS/Hypervisor
Kernel, Initrd++

HW w/ Intel TXT/TPM

App App

VM-1

VM-2

 vRTM

 Tboot

Measurements match!

System & VMs Trusted

Docker

Deamon

Container

apps

 Assure and attest the Integrity of Host and the VM w/ Docker Engine

Trusted Platform Module (TPM)

Intel® Trusted Execution Technology (Intel® TXT)

What is Measured for Trusted Containers

Bootloader, Tboot and OS Kernel

Initrd++ (includes tboot-xm)

Docker* Daemon

• Container management engine (e.g., Docker engine)

• Measurement Agents

Trusted launch of containerized

application

C
h

a
in

 o
f

T
ru

s
t

e
x

te
n

d
e

d
 t

o

a
p

p
li

c
a

ti
o

n
 l
a

u
n

c
h

Intel TXT + TPM

Bios

ACM signed by manufacturer

Apache* Patch v2

Apache Patch v1

Apache

Ubuntu* 14.04

Ubuntu

Containerized application

layers (e.g., Docker image

layers)

Load-time creation of a

component’s Identity

(i.e., Hash of component)
Measurement

Intel® Trusted Execution Technology (Intel® TXT) chain of trust extended up the stack

Looking Ahead: Hardware-based Runtime Integrity

Intel® Kernel Guard Technology (Intel® KGT)

 Policy specification and enforcement framework

 Ensuring runtime integrity of kernel and platform assets

Extends launch-time integrity to run-time integrity

Based on a thin Intel VT-x (VMX-root) layer software component called xmon

 De-privileges OS

 Monitors/controls access to critical assets (CRs, MSRs, Memory Pages..)

Allows specification of policy from user-mode via configfs

 Policy describes assets to be monitored and actions to be taken when monitoring events

occur

Policy can be locked down until next reboot

Intel KGT: Flexible, low overhead integrity framework; open source

Intel® Virtualization Technology for IA-32, Intel® 64 and Intel® Architecture (Intel® VT-x)

Placeholder Footer Copy / BU Logo or Name Goes Here

“We’re going to build a

software layer to make the

internet programmable”

- Docker, DockerCon 2015

Docker is the best

known example…

… but these trends are being driven by the

growth of software across all industries and

the need to rapidly build, iterate, and

improve it

… all major IT players are investing

What are the challenges?

Containers don’t keep themselves up

to date

Many more containers but fewer

tools for protecting them

Many more, and more diverse,

places where your containers run

‘All or nothing’ administrative model

App

A

App

B

Bins/Libs Bins/Libs

Guest

OS

Guest

OS

Hypervisor

Server / IaaS

VM

Host OS / VM

Server / IaaS

Docker Engine

A
p

p
 A

A
p

p

A
’

A
p

p
 B

A
p

p

B
’

A
p

p

B
’

A
p

p

B
’

A
p

p

B
’

Anti-

malwa

re

agent

IDS /

IPS

agent

softwa

re

updat

e

agent

Vuln

mgmt

agent

Anti-

malwa

re

agent

IDS /

IPS

agent

softwa

re

updat

e

agent

Vuln

mgmt

agent

© 2015 Twistlock 21

Why not existing solutions?

Containers are portable and minimal

Deployment is frictionless

Cramming containers full of agents and tools is

antithetical to the model

A
p

p
 A

IDS / IPS

agent

Vuln mgmt

agent

Anti-malware

agent

software

update agent

A
p

p
 A

IDS / IPS

agent

Vuln mgmt

agent

Anti-malware

agent

software

update agent

A
p

p
 A

IDS / IPS

agent

Vuln mgmt

agent

Anti-malware

agent

software

update agent

What is Twistlock?

The first security solution built for containerized computing

… that secures the entire lifecycle of containerized apps…

… across all the environments they run in

A company that contributes back to the open source community

© 2015 Twistlock 23

Defend your containers

Vulnerability management, with an intelligence stream of the

latest CVEs and proactive defense

Advanced authorization capabilities, including Kerberos support

and role based access control

Runtime defense, monitoring container memory space, storage,

and networking to detect and block anomalous behaviors

© 2015 Twistlock 24

Purpose built

Agentless

Runs anywhere your containers run

API driven for continuous integration

Container Security Console

Configure

Monitor

Visualize risk

© 2015 Twistlock 26

Vulnerability management “demo”

© 2015 Twistlock 27

Block deployment of

vulnerable images

Tag resources and apply

granular policies

Security hardening “demo”

Ensure regulatory

compliance

Prevent configuration drift

© 2015 Twistlock 28

RBAC “demo”

© 2015 Twistlock 29

Evolution of roles with containers

Host

/

IaaS

‘Traditional’

With Twistlock

Just

the

app

App

Reactive

analysis

and

monitoring

Micro

service

A

Micro

service

B

Micro

service

C

Micro

service

D

Host

/

IaaS

Micro

service

A

Micro

service

B

Micro

service

C

Micro

service

D

Cluster

Managemen

t

Twistlock

Container

Security

Console

Policy

centrally

expressed,

distributed

throughout

the dev

cycle, and

eventing

centralized

Container

Defense Policies

© 2015 Twistlock 30

The containers are coming

… if they’re not already on your network

Balance security and capability with tools purpose built for the new model

Container Security

Paul Cichonski
Cloud Architect

@paulcichonski

Why Containers? Two Areas of Focus

1. Software Delivery:

 Build pipelines now produce consistent, immutable artifacts

 Immutable artifacts offer many benefits for security

2. Software Deployment:

 Software deployment mechanism is common across all technologies (e.g., python, JVM,

c, perl)

 If it can go into a container, you can deploy it

 Incredible for devs, but creates many challenges for security

Evolution of Software Delivery

Era* Characteristics

Custom Bash

Scripts

(1990s – late

2000s)

• Mutable infrastructure (e.g., send EAR to server)

• Servers are pets, we even gave them names

• Many differences between environments

• Deployed a few times per month (if lucky)

Configuration

Management

(Late 2000s –

current)

• Immutable infrastructure

• Servers start becoming cattle

• Still many differences between environments

• Deployments happen more, but still slow

Containers

(now)

• Immutable infrastructure

• Servers become more like cattle, OS provides bare minimum

to run container

• Software systems now fully reproducible in all environments

• Build/Deployment pipeline is the center of the universe

• Deploy as frequently as your build pipeline can produce new

image

 *time periods are rough estimates, they change depending on who you ask.

Deployment Pipelines with Containers

Steps taken inside CI (fail fast between steps):

1. Standup dependent services (using containers) for testing

2. Run unit and integration tests on code

3. Create final Docker Image of tested code

4. Start container using newly created image

5. Run black box functional tests on container

6. Run security scans on container

1. Examples: SCAP scan, GAUNTLT tests, CIS Docker Benchmark

7. Push validated image to registry IFF all previous steps pass

Why this is good for security?

• A successful run of deployment pipeline gives us an immutable image for deploying to

production

– Never run anything not validated by pipeline

• Before ever getting to prod, we have already instantiated the container and run:

– Blackbox functional tests

– Full security scans (both blackbox and whitebox)

This means we can catch security issues before ever releasing

software into the wild

Side bonus: devs can run all this from their laptop

Deploying Containers (high level)

Manifest encodes:

• Docker image to launch on cluster

• Number of instances to deploy (e.g., run 3 instances of nginx container)

• Resource requirements (e.g., each container needs 2 cores and 8gb memory)

• Custom rules (e.g., don’t run container X and container Y on same host)

Deploying Containers (high level)

• Each server (or resource) is only there to run containers

• Stripped down kernel (lower attack surface)

• Orchestration tooling required to help schedule containers across a cluster

Benefits for Dev/Ops

Containers provide a common point of abstraction for deploying any arbitrary

software stack

Great for microservices and polyglot infrastructures

We can start thinking about creating infrastructure-level patterns and sharing

them via GitHub (think: package manager for your datacenter)

What about security? Here be dragons

Orchestration layer adds new set of distributed communication protocols that

must be secured

Host-level isolation for different workloads still required until container isolation is

on par with OS isolation

Storing secrets becomes more complex in a dynamic world

Image validation tooling required to forbid untrusted images (it is not enabled by

default)

Burden of patching software shifts to devs

Questions?

