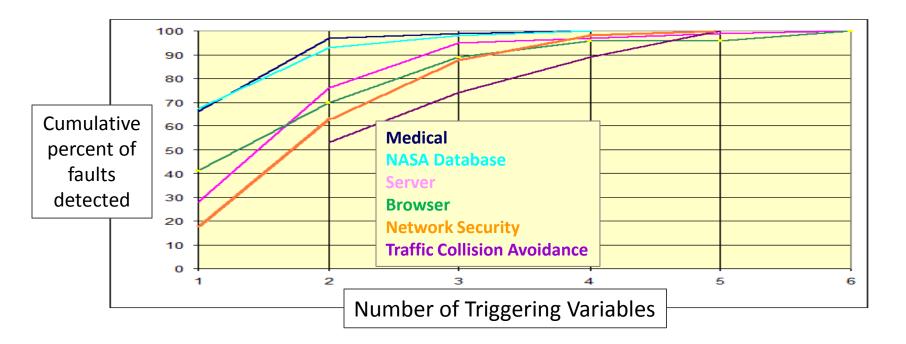
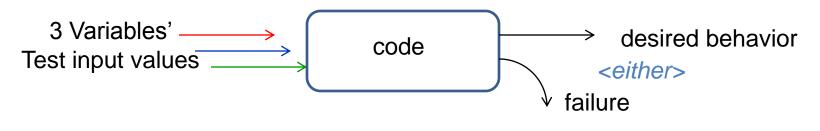
IV&V International Workshop 2013

Evaluating the t-way Combinatorial Technique for Determining the Thoroughness of a Test Suite

Charley Price Charles.Price@tasc.com Rick Kuhn <u>d.kuhn@nist.gov</u>


Ricky Forquer <u>Ricky.A.Forquer@nasa.gov</u> Adel Lagoy Ricky.A.Forquer@nasa.gov

Raghu Kacker <u>d.kacker@nist.gov</u>


Goal: Reduce testing cost

• Key finding:

Most failures found are triggered by one or two variables, and progressively fewer by three, four, or more variables, and the maximum interaction degree is small.

Examples of 't-way' Variable Value Interaction-Driven Failures

Variables >	Pressure	Volume	Velocity	Result	't-way' Interaction
Three	< 10			Failure	1 - Way
possible failure	< 10	> 300		Failure	2 - Way
scenarios	< 10	> 300	> 5	Failure	3 - Way

- The NIST Combinatorial Coverage Tool measures the capacity of a test suite for detecting faults due to t-way interactions.
- This is different from code coverage measures such as statement or branch coverage.

NIST Tool Mechanics

In excel, define Input Test Variables and their Values for test cases:												
V1 V2 V3												
ENABLE	SIDE A	AVERAGE										
ENABLE	SIDE A	MINIMUM										
ENABLE	SIDE B	MINIMUM										
DISABLE	SIDE A	AVERAGE										
DISABLE	SIDE B	MINIMUM										

1

2

3

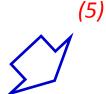
4

5

 \bigtriangledown

Save Values in .csv file format

ENABLE, ENABLE, ENABLE, DISABLE, DISABLE, Side A, Side A, Side B, Side A, Side B, AVERAGE, MINIMUM, MINIMUM, AVERAGE, MINIMUM Input .csv file into NIST Tool which compares the Test Values against all possible values:


2-way (12)

ENABLE	SIDE A
ENABLE	SIDE B
ENABLE	AVERAGE
ENABLE	MINIMUM
DISABLE	SIDE A
DISABLE	SIDE B
DISABLE	AVERAGE
DISABLE	MINIMUM
SIDE A	AVERAGE
SIDE A	
SIDE B	AVERAGE
SIDE B	MINIMUM

(11)

3-way (8)

_			
N	AVERAGE	SIDE A	ENABLE
J	MINIMUM	SIDE A	ENABLE
	AVERAGE	SIDE B	ENABLE
	MINIMUM	SIDE B	ENABLE
	AVERAGE	SIDE A	DISABLE
	MINIMUM	SIDE A	DISABLE
	AVERAGE	SIDE B	DISABLE
	MINIMUM	SIDE B	DISABLE
_			

NIST Tool Output Chart

NIST Combinatorial Tool Evaluation IV&V Workshop 2013

NIST Tool Output Chart

Number of	parameters	Invalid Combin 5 3 0	_	Load	input file	rameter	s		eat map		t\bin	2-way 3-way	3, 12, 0.917 3 way stats: co	oms, var/val, total
Max values p	Show input file 5 tests, 3 parameters loaded						sing co tests		is] Report 0000 ⊊	1, 8, 0.625 4-way 4 way stats:				
	Point Chart	× · · · · ·								overa	ge	Co	Coverage for file Variables againage Total 3-way = 0.625 v >= 0.00 = 1/1 = 1.0 v >= 0.05 = 1/1 = 1.0	000
entage rerage	0.8											Co Co Co Co Co Co Co Co Co	$\begin{array}{l} v >= 0.10 = 1/1 = 1.1\\ v >= 0.15 = 1/1 = 1.1\\ v >= 0.20 = 1/1 = 1.1\\ v >= 0.25 = 1/1 = 1.1\\ v >= 0.30 = 1/1 = 1.1\\ v >= 0.35 = 1/1 = 1.1\\ v >= 0.45 = 1/1 = 1.1\\ v >= 0.45 = 1/1 = 1.1\\ v >= 0.45 = 1/1 = 1.1\\ v >= 0.55 = 1/1 = 1.1\\ v >= 0.55 = 1/1 = 1.1\\ \end{array}$	000 000 000 000 000 000 000 000 000 00
	0.4			- 3	B-way	y co'	vera	age				Co Co Co Co Co Co Co	$\begin{array}{l} v > 0.60 = 1/1 = 1.0 \\ v > 0.65 = 0/1 = 0.0 \\ v > 0.70 = 0/1 = 0.0 \\ v > 0.75 = 0/1 = 0.0 \\ v > 0.80 = 0/1 = 0.0 \\ v > 0.85 = 0/1 = 0.0 \\ v > 0.85 = 0/1 = 0.0 \\ v > 0.95 = 0/1 = 0.0 \\ v > 0.95 = 0/1 = 0.0 \\ v > 1.00 = 0/1 = 0.0 \\ v > 1.00 = 0/1 = 0.0 \\ v > 0.00 = 0/1 \\ v > 0.0$	000 000 000 000 000 000 000 000
	0	0.10 0.20 0.15 0.20 Percer	0.25	0.35	0.45	50 0.55 t_\x/			0.8 0.75 0.8	0.85	0.95	D		identifie ing Case

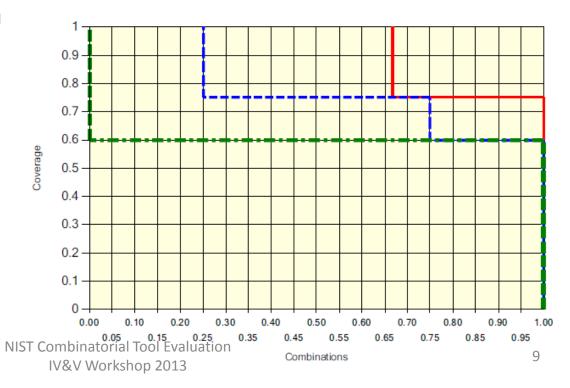
"The NIST Tool provides a structure for recording and reporting test coverage."

- 1. <u>As an inline IV&V analysis tool (including peer reviews):</u>
 - 1) Example: analyze coverage/lack of coverage of developer tests
 - 2) Expect moderate overhead for worthwhile value added.
- 2. <u>As an inline Verification tool in JSTAR/ITS:</u>
 - 1) Example: identify the coverage of tests as they are defined
 - 2) Expect low overhead for high value added for test planning.
- 3. As an IV&V audit tool:
 - 1) Example: auditing completed IV&V analysis of developer tests
 - 2) Significant overhead for value added.
- 4. <u>As a macroscopic IV&V tool:</u>
 - 1) Example: analyze project or multi-project test plans
 - 2) Expect a moderate overhead for additional high level insight.

IV&V use of NIST Tool Recommendations:

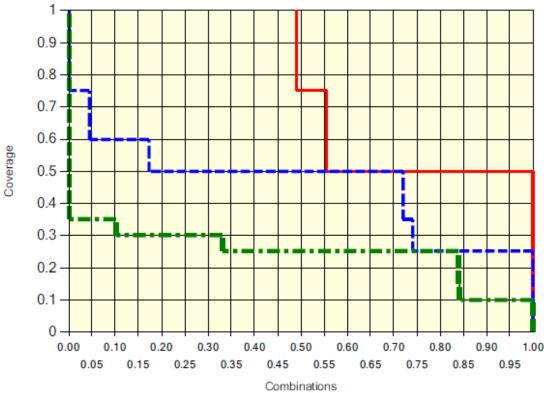
"The value of the NIST Tool must be proven in IV&V field trials."

- 1. Add the NIST Tool and Instructions for Use into the Catalog of Methods.
- 2. <u>Use the Tool during active IV&V projects (including peer reviews)</u>
 - 1) For evaluation of test coverage of developer's test plans.
 - 2) During analysis of developer test case scripts.
- 3. <u>Implement Tool in JSTAR/ITC as verification test planning aid to measure</u> <u>coverage of tests as they are planned and before they are run</u>
 - 1) During inhouse testing of developer flight software
 - 2) During inhouse development of test tools and other support software
 - 3) During development of simulators
- 4. <u>Consider</u>
 - 1) Use of Tool in comparing developer tests plans among projects.
 - 2) Collaboration with USAF and JHU/APL regarding Tool experiences
 - 3) Introducing Tool to software developers

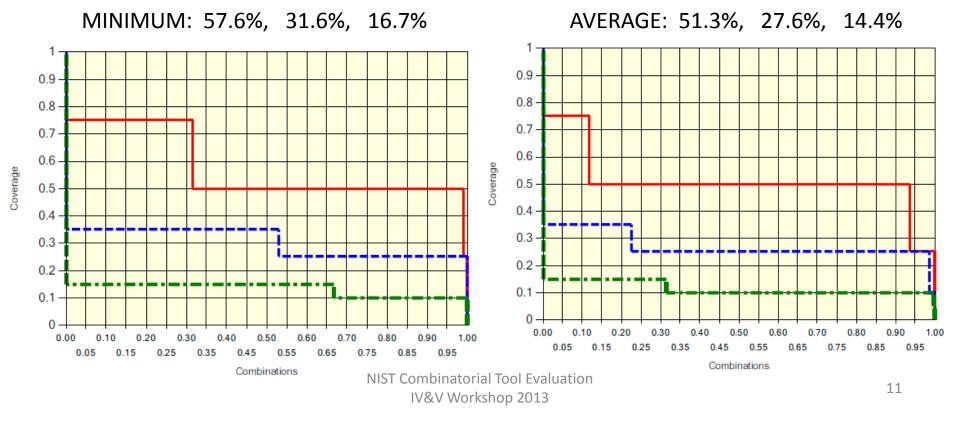

Combinatorial Coverage Measurement Example

Rick Kuhn

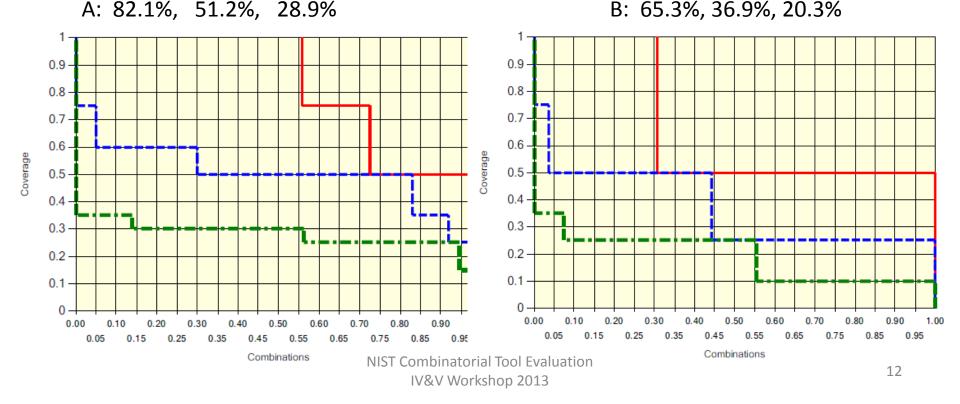
NIST Combinatorial Tool Evaluation IV&V Workshop 2013


Coverage of flag combinations

- Four flags: control enable/disable; control side; telemetry side; control flag (avg/min)
- Reasonably good : 88.9% (2-way), 75% (3-way), 62.5% (4-way)
- Review of test values shows only one test for telemetry side B, so coverage would be higher if supplemented with more side B tests
- If flags affect execution sequence of software, combinations may be significant;
- Suggests need for additional tests

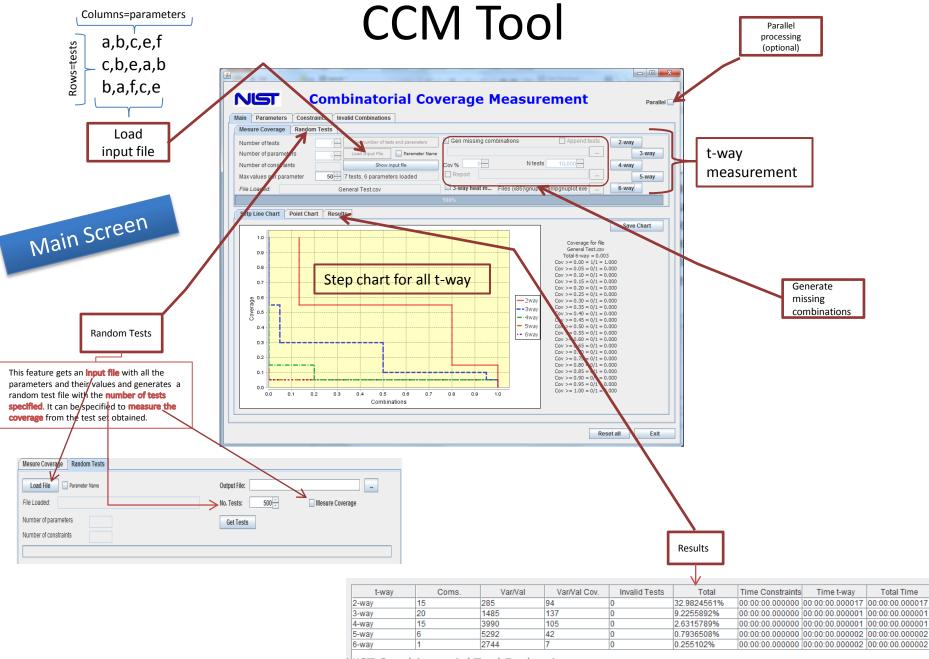

14 tests, valid/invalid value combination coverage

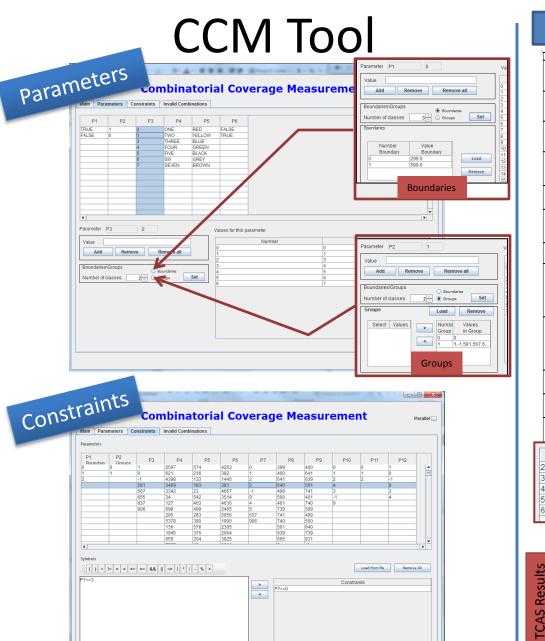
- 2, 3, 4-way coverage = 76.1%, 45.9%, 25.7%
- Combinations of values probably less significant than for flags that control s/v[']


Comparison of coverage: tests for MINIMUM and AVERAGE

- Coverage similar although 4 tests with MINIMUM flag, 10 with AVERAGE flag
- Coverage significantly lower than for flags

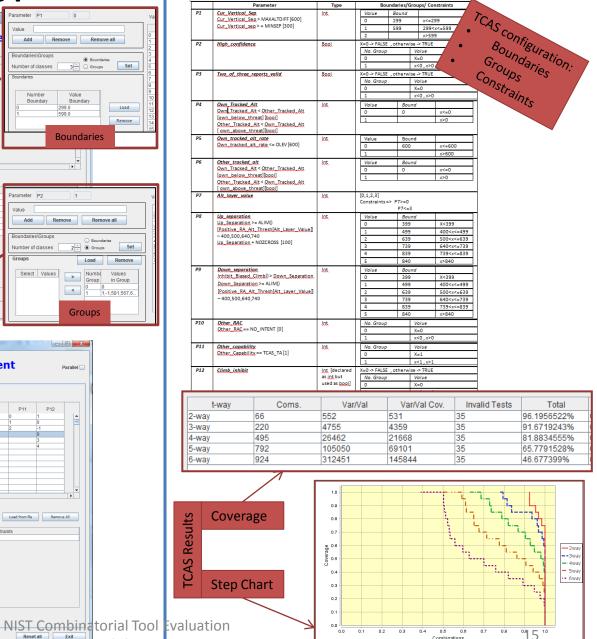
Comparison of coverage: tests for type A and B sensors


- Significant difference in coverage
- Suggests tests are more thorough for A type; higher risk of untested situations for B
- More tests for B may be helpful


Difference in coverage for type A and B not obvious

A:

	1	0	1	0	1	(C	1	0	1	0	1	0	1	0		1	1	
	1	0	1	0	0	(C	1	0	1	0	1	0	1	0		0	1	
	0	0	0	0	0	(C	0	0	0	0	0	0	0	0		0	0	
	1	0	1	0	1	(C	1	0	1	0	1	0	1	0		1	1	
	1	0	1	0	1	(C	1	0	1	0	1	0	1	0		1	1	
	1	0	1	0	1	(C	1	0	1	0	0	0	0	0		1	1	
	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1		1	1	
	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1		1	1	
	0	1	0	1	0	2	1	0	1	0	1	0	1	0	1		0	0	
	0	1	0	1	0	2	1	0	1	0	1	0	1	0	1		0	0	
	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1		1	1	
	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1		1	1	
	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1		1	1	
	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1		1	1	
B:	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0		1
		0	0	0	0	0	0			0	0	0	0		0	0	0		0
	1	0	0	0	0	0	0	0	1 0	0		0	0	0 0	0	0	0		0
	0							0			0								
	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0		1
	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0		1
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1		0
	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1		0
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
	1	1	1	1	1	1				Tool Eval		1	1	1	1	1	1	13	1
	1	1	1	1	1	1	1	IVKV	vvorksh	op 2013	1	1	1	1	1	1	1		1



NIST Combinatorial Tool Evaluation IV&V Workshop 2013

clr

EXAMPLE, TCAS [Siemens suite], universe file

Reset all V&V Workshop 2013