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FrodoPKE
(IND-CPA)

FrodoKEM
(IND-CCA)

[FujisakiOkamoto’99,HHK’17]

(generic transform)

Concrete Instantiations

1 FrodoKEM-640: targets Level 1 security (≥ AES-128).

2 FrodoKEM-976: targets Level 3 security (≥ AES-192).

3 Other parameterizations are easy, by changing compile-time constants.

FrodoKEM 

FrodoKEM’s security derives from plain Learning With Errors 

on algebraically unstructured lattices, 

parameterized cautiously to avoid known risk categories, 

and to conform to a worst-case/average-case reduction. 
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breaking random inputs =⇒ solving famous problems on any lattice.

“[This] assures us that attacks on the cryptographic construction
are likely to be effective only for small choices of parameters and not
asymptotically. In other words . . . there are no fundamental flaws in the
design of our cryptographic construction.” [MicciancioRegev’09]

I LWE has been heavily used and cryptanalyzed by countless works.

Public-Key Encryption/Key Exchange

I Many schemes with tight (CPA-)security reductions from LWE:
[Regev’05,PVW’08,GPV’08,P’09,LP’11,. . . ]

I FrodoCCS [BCDMNNRS’16] instantiated and implemented [LP’11], using
pseudorandom public matrix A to reduce public key size.

I FrodoPKE [this work]: wider error distributions, new parameters, . . .

Pedigree 
Learning With Errors (LWE) [Regev’05] 
I Lineage of [Ajtai’96,AjtaiDwork’97]: worst-case/average-case reductions: 
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Assumption: for uniformly random matrix A over Zq and S from χ,

[A , B ≈ SA]
c≡ uniform over Zq.

(Images courtesy xkcd.org)

LWE and FrodoPKE 
Learning With Errors 
I Dimension n, modulus q, error distribution χ on ‘small’ integers. 
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LWE and FrodoPKE 
Learning With Errors 
I Dimension n, modulus q, error distribution χ on ‘small’ integers. 

Assumption: for uniformly random matrix A over Zq and S from χ, 

[A , B ≈ SA] 
c ≡ uniform over Zq. 

Bounded-distance decoding on a random ‘q-ary’ lattice defined by A: 

(0, q) 
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C ≈ AR

C0 ≈ BR+ q
2 ·M

M ∈ {0, 1}k×`

C0 − SC ≈ q
2 ·M

(A,B,C,C0)
c≡ unif
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Distinctive Features of FrodoPKE/KEM 

1 

2 

3 

Generic, algebraically unstructured lattices: plain LWE. 

‘Semi-wide’ errors conforming to a worst-case/average-case reduction 
from a previously studied lattice problem: BDD with DGS. 

Simple design and constant-time implementation: 

F power-of-2 modulus q for cheap & easy modular arithmetic 
F straightforward error sampling 
F no ‘reconciliation’ or error-correcting codes for removing noise 
F x64 implementation: 256 lines of plain C code 

(+ preexisting symmetric primitives) 
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Unstructured Lattices

Risk Category 1: Geometric & Algebraic Structure

1 NTRU structure ⇒ n short vectors, speeds up lattice attacks [KF’17].

(Doesn’t apply to Ring/Module-LWE.)

2 2Õ(
√
n)-approx-SVP in qpoly-time for ideal lattices in cyclotomics

[CDPR’16,CDW’17].

(Doesn’t apply to NTRU or R/M-LWE, nor to PKE approx factors.)

=⇒ May be gaps in hardness between structured and unstructured lattices.

Our Foundation: Plain LWE on Unstructured Lattices
I LWE is bounded-distance decoding on a lattice defined by the

uniformly random, unstructured matrix A.

I No algebraic or ‘planted’ geometric structure in the lattice.
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Semi-Wide Errors

Choosing an Error Distribution
I Narrower errors =⇒ smaller parameters q, n =⇒ better efficiency.

I But how narrow can the error distribution safely be?

Risk Category 2: Narrow Errors

1 LWE with O(1)-bounded error is poly(n)-time solvable [AG’11,ACFP’14]

given large-poly(n)-many samples. (PKEs don’t reveal this many!)

2 Worst-case-hardness theorems need Gaussian error of σ >
√
n/(2π).

Or narrower error, but only for few LWE samples. (PKEs reveal more!)

=⇒ Sizeable gap between known-vulnerable and worst-case-hard params.

New Worst-Case Hardness
I A latent reduction from [R’05,PRS’17] works for our σ ≥ 2.3 ≈ η(Z).

I Works for a bounded poly(n) number of LWE samples: covers PKEs!
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√ 
n/(2π). 

Or narrower error, but only for few LWE samples. (PKEs reveal more!) 

=⇒ Sizeable gap between known-vulnerable and worst-case-hard params. 

New Worst-Case Hardness 
I A latent reduction from [R’05,PRS’17] works for our σ ≥ 2.3 ≈ η(Z). 
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Theorem (extracted from [R’05,PRS’17])

Solving LWE for Gaussian error σ ≥ η(Z) with m = poly(n) samples

⇓
solving BDD at distance d = σ

√
2π with N = m · poly(n) DGS samples.

Interpretation
I Theoretical support & more confidence for semi-wide Gaussian error

with limited number of samples.

I Reduction is non-tight; for concrete security we use cryptanalysis.

(Tightening the time & sample overhead is a good research direction.)

New Worst-Case Hardness 

Worst-Case Problem: BDD with DGS [AR’04,R’05,LLM’06,DRS’14] 

I Given N samples from discrete Gaussian DL∗ , decode L to distance d. 

I State of the art is limited to distance d < 
p
ln(N)/(2π). 
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This significantly underestimates the cost of known attacks, but it is
prudent to expect better lower-order terms with further research.

n q σ Bits of Security
C ≥ Q ≥

FrodoKEM-640 640 215 2.75 143 103
FrodoKEM-976 976 216 2.3 209 150

Concrete Parameters 

I Use ‘core-SVP’ methodology [ADPS’16] to lower-bound the first-order 
exponential time (and space) of SVP in appropriate dimension. 
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I Sizes (in bytes):

secret key public key ciphertext

FrodoKEM-640 10,256 9,616 9,736
FrodoKEM-976 15,640 15,632 15,768

Performance 

I Speed (in kilocycles, 3.4GHz Intel Core i7-6700 Skylake, AES-NI): 

KeyGen Encaps Decaps 

FrodoKEM-640 1,287 1,810 1,811 
FrodoKEM-976 2,715 3,572 3,588 
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Parting Thought 

FrodoKEM’s security derives from plain Learning With Errors 

on algebraically unstructured lattices, 

parameterized cautiously to avoid known risk categories, 

and to conform to a worst-case/average-case reduction. 

https://FrodoKEM.org 

Thanks! 
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