# High Speed MQ Signature: HiMQ 3

Cheol-Min Park (NIMS)

Joint work with Kyung-Ah Shim, Aeyoung Kim (NIMS) and Namhun Koo (SKKU)

The First PQC Standardization Conference April 12, 2018

#### Presentation Outline

- Algorithm Specification
- Security Analysis of HiMQ-3
- Key feature of HiMQ-3
- Implementation and Comparison
- 5 Advantages and limitations

# General Structure of MQ Signature

- $F_q$ : finite field with q elements
- $\mathcal{F}: F_q^n \to F_q^m$  by  $\mathcal{F}(X) = (\mathcal{F}^{(1)}(x), ..., \mathcal{F}^{(m)}(x))$  for  $X = (x_1, x_2, ..., x_n)$
- ullet  $\mathcal{T}:F_q^n o F_q^n,\,\mathcal{S}:F_q^m o F_q^m$  invertible affine maps
- $\bullet \ \mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ \mathcal{T} : F_q^n \to F_q^m$
- ullet Public key:  $\mathcal{P}$ , Secret key:  $\mathcal{S}, \mathcal{F}, \mathcal{T}$

### Building Blocks of $\mathcal{F}$

- ullet Solvable System of Quadratic Equations  ${\cal Q}$ 
  - $char(F_a)=2$ , is odd.
  - $Q:(x_1x_2, x_2x_3, ..., x x_1) = (\beta_1, \beta_2, ..., \beta)$  for  $\beta_i = F_q$

$$(x_1x_2) \times (x_2x_3) \times \cdots \times (x x_1) = (\prod_{i=1} x_i)^2 = (\prod_{i=1} \beta_i)$$
 (1)

$$\left(\prod_{i=1} x_i\right) = \sqrt{\left(\prod_{i=1} \beta_i\right)}$$
 (2)

$$(x_2x_3) \times (x_4x_5) \times \cdots \times (x_{-1}x_i) = (\prod_{i=2} x_i) = (\prod_{i \text{ even}} \beta_i)$$
 (3)

Using E.q. (2) and E.q. (3), we can obtain  $x_1$  and so  $x_2,...,x$ .

#### Central map ${\mathcal F}$

•  $\mathcal{F}(X) = (\mathcal{F}^{(1)}(x), ..., \mathcal{F}^{(m)}(x))$  where

$$\begin{cases} \mathcal{F}^{(1)}(x) = \Phi_{1}(\mathbf{x}_{\mathbf{v}}) + \delta_{1}x_{v+1}x_{v+2} & (\mathbf{x}_{\mathbf{v}} = (x_{1}, ..., x_{v})) \\ \mathcal{F}^{(2)}(x) = \Phi_{2}(\mathbf{x}_{\mathbf{v}}) + \delta_{2}x_{v+2}x_{v+3} \\ \vdots & \vdots \\ \mathcal{F}^{(o_{1})}(x) = \Phi_{o_{1}}(\mathbf{x}_{\mathbf{v}}) + \delta_{o_{1}}x_{v+o_{1}}x_{v+1} \\ \end{cases}$$

$$\begin{cases} \mathcal{F}^{(o_{1}+1)}(x) = \Psi_{1}(\mathbf{x}_{\mathbf{v}_{1}}) + \delta_{o_{1}+1}x_{v_{1}+1}x_{v_{1}+2} & (\mathbf{x}_{\mathbf{v}_{1}} = (x_{1}, ..., x_{v+o_{1}})) \\ \mathcal{F}^{(o_{1}+2)}(x) = \Psi_{2}(\mathbf{x}_{\mathbf{v}_{1}}) + \delta_{o_{1}+2}x_{v_{1}+2}x_{v_{1}+3} \\ \vdots & \vdots \\ \mathcal{F}^{(o_{1}+o_{2})}(x) = \Psi_{o_{2}}(\mathbf{x}_{\mathbf{v}_{1}}) + \delta_{o_{1}+o_{2}}x_{v_{1}+o_{2}}x_{v_{1}+1} \\ \end{cases}$$

$$\begin{cases} \mathcal{F}^{(o_{1}+o_{2})}(x) = \Psi_{o_{2}}(\mathbf{x}_{\mathbf{v}_{1}}) + \delta_{o_{1}+o_{2}}x_{v_{1}+o_{2}}x_{v_{1}+1} \\ \mathcal{F}^{(o_{1}+o_{2}+1)}(x) = \sum_{v+1 \leq i \leq j \leq v_{1}} \beta_{j,i}^{(1)}x_{j}x_{j} + \Theta_{1}(x) + \Theta_{1}(x) + 1x_{o_{1}+o_{2}+1} \\ \mathcal{F}^{(o_{1}+o_{2}+2)}(x) = \sum_{v+1 \leq i \leq j \leq v_{1}} \beta_{j,i}^{(o_{3})}x_{j}x_{j} + \Theta_{2}(x) + \Theta_{2}(x) + 2x_{o_{1}+o_{2}+2} \\ \vdots & \vdots \\ \mathcal{F}^{(o_{1}+o_{2}+o_{3})}(x) = \sum_{v+1 \leq i \leq j \leq v_{1}} \beta_{j,i}^{(o_{3})}x_{j}x_{j} + \Theta_{o_{3}}(x) + \Theta_{o_{3}}(x) + \sigma_{3}x_{o_{1}+o_{2}+o_{3}} \end{cases}$$

# Central map $\mathcal{F}$ of HiMQ 3F

$$\Phi_k(x) = \sum_{1 \le i \le j \le v} \alpha_{i,j}^{(k)} x_i x_j, \quad \Psi_k(x) = \sum_{i=1}^{v} \sum_{j=v+1}^{v+o_1} \alpha_{i,j}^{(o_1+k)} x_i x_j$$

$$\Theta_{i}(\mathbf{x}) = \sum_{j=1}^{v_{1}} \gamma_{i,j} x_{i} x_{v_{1}+(i+j-1) \pmod{o_{3}}},$$

$$\Theta_{i}(\mathbf{x}) = \sum_{j=1}^{v_{2}} \gamma_{i,j} x_{i} x_{v_{2}+(i+j-1) \pmod{o_{3}}}$$

• All the quadratic terms in  $\Theta_i(\mathbf{x})$  and  $\Theta_i(\mathbf{x})$   $(i=1,\cdots,o_3)$  don't overlap and symmetric matrix of the quadratic part of each  $\mathcal{F}^{(i)}$  has full rank for  $i=o_1+o_2+1,\cdots,m$ .  $v>2o_1+1$  and  $o_2>o_3$ .

 $v \ge 2o_1 + 1$  and  $o_2 \ge o_3$ 

## Central map $\mathcal{F}$ of HiMQ 3

$$\Phi_i(\mathbf{x}) = \sum_{j=1}^{v} \alpha_{i,j} x_j x_{1+(i+j-1) \pmod{v}},$$

$$\Psi_i(\mathbf{x}) = \sum_{j=1}^{v} \alpha_{i,j} x_j x_{v+(i+j-1) \pmod{o_1}}.$$

- $\bullet$   $\Theta_i(\mathbf{x}), \Theta_i(\mathbf{x})$  is the same as HiMQ-3F
- All the quadratic terms in  $\Phi_i(\mathbf{x})$   $(i=1,\cdots,o_1)$  and  $\Psi_i(\mathbf{x})$  $(i = 1, \dots, o_2)$  don't overlap and symmetric matrix of the quadratic part of each  $\mathcal{F}^{(i)}$  has full rank for  $i = o_1 + o_2 + 1, \cdots, m$ .

$$v \ge 2o_1 + 1 \text{ and } o_1 \ge o_2 \ge o_3.$$

# Symmetric Matrices of the Quadratic Parts of ${\mathcal F}$ for HiMQ 3F



8/27

# Symmetric Matrices of the Quadratic Parts of ${\mathcal F}$ for HiMQ 3



#### How to invert $\mathcal{F}$

- Given  $\xi = (\xi_1, ..., \xi_m)$ , find s such that  $\mathcal{F}(s) = \xi$ 
  - 1. Choose a random Vinegar vector  $s_v = (s_1, ..., s_v)$  and plug it into  $\mathcal{F}^{(i)}$   $(1 \le i \le o_1)$ .
  - 2. Solve a quadratic system of  $o_1$  equations with  $o_1$  variables

$$(\delta_1 x_{\nu+1} x_{\nu+2}, \dots, \delta_{o_1} x_{\nu+o_1} x_{\nu+1}) = (\xi_1 - \Phi_1(s_{\nu}), \dots, \xi_{o_1} - \Phi_{o_1}(s_{\nu}))$$

- Find solution  $(s_{v+1},...,s_{v+o_1})$  by using E.q. (2) and E.q. (3).
- 3. To Invert  $\mathcal{F}^{(i)}$   $(o_1+1\leq i\leq o_1+o_2)$  in the 2nd layer is similar to Step 1 and Step 2.
- 4. Plug  $(s_1, ..., s_{v+o_1+o_2})$  into the polynomials  $\mathcal{F}^{(i)}$   $(o_1 + o_2 + 1 \le i \le m)$ .
- 5. Solve a linear system of  $o_3$  equations with  $o_3$  variables and find solution  $(s_{v+o_1+o_2},...,s_n)$  by Gaussian elimination.

#### Presentation Outline

- Algorithm Specification
- Security Analysis of HiMQ-3
- Key feature of HiMQ-3
- Implementation and Comparison
- 5 Advantages and limitations

### Underlying problems for security of HiMQ 3

- Polynomial System Solving (PoSSo) Problem: Given a system  $\mathcal{P} = (P^{(1)}, \cdots, P^{(m)})$  of m nonlinear polynomial equations defined over  $\mathbb{F}_q$  with degree of d in variables  $x_1, \cdots, x_n$  and  $\mathbf{y} = (y_1, \cdots, y_m) \quad \mathbb{F}_q^m$ , find values  $(x_1, \cdots, x_n) \quad \mathbb{F}_q^n$  such that  $P^{(1)}(x_1, \cdots, x_n) = y_1, \cdots, P^{(m)}(x_1, \cdots, x_n) = y_m$ .
- EIP (Extended Isomorphism of Polynomials) Problem: Given a nonlinear multivariate system  $\mathcal{P}$  such that  $\mathcal{P} = S \circ \mathcal{F} \circ T$  for linear or affine maps S and T, and  $\mathcal{F}$  belonging to a special class of nonlinear polynomial system  $\mathcal{C}$ , find a decomposition of  $\mathcal{P}$  such that  $\mathcal{P} = S \circ \mathcal{F} \circ T$  for linear or affine maps S and T, and  $\mathcal{F}$ .
- MinRank Problem: Let  $m, n, r, k \in \mathbb{N}$  and r, m < n. The MinRank(r) problem is, given  $(M_1, \cdots, M_l) \in \mathbb{F}_q^{m \times n}$ , find a non-zero k-tuple  $(\lambda_1, \cdots, \lambda_k) \in \mathbb{F}_q^k$  such that  $Rank(\sum_{i=1}^k \lambda_i M_i) \leq r$ .

#### Direct attack

Complexity of HiMQ-3 against the direct attacks is estimated as

$$C_{Direct}(q, m, n) = C_{MQ}(q, m, n),$$

where  $C_{MQ}(q, m, n)$  denotes complexity of solving a semi-regular system of m equations in n variables defined over  $\mathbb{F}_q$  by using HF5 algorithm.

• Running Time (Second) for Solving Two Types of Quadratic Systems over  $\mathbb{F}_{2^8}$ .

| $(v, o_1, o_2, o_3)$ | (7,3,3,2) | (7,3,3,3) | (9,3,3,3) | (11,5,3,2) | (11,5,4,3) | (11,5,4,4) | (11,5,5,4) |
|----------------------|-----------|-----------|-----------|------------|------------|------------|------------|
| Random System        | 0.145     | 0.602     | 0.618     | 3.003      | 112.861    | 639.576    | 5753.369   |
| HiMQ-3               | 0.134     | 0.593     | 0.57      | 3.203      | 109.823    | 756        | 5712.19    |

#### Rank attack

 MinRank Attacks: Complexity of HiMQ-3 against the MinRank attacks is

$$C_{MR}(q, v, o_1, m) = o_1 \cdot q^{v-o_1+3}$$



Figure: 1st layer of HiMQ-3

 HighRank Attacks: Complexity of HiMQ-3 against the HighRank attacks is

$$C_{HR}(q,o_3,n)=q^{o_3}\cdot\frac{n^3}{6}$$

### Kipnis Shamir Attacks

• Complexity of HiMQ-3 against the Kipnis-Shamir Attacks is

$$C_{KS}(q, v, o_1, o_2, o_3) = q^{v+o_1+o_2-o_3}$$



Figure:  $S \circ F$  of HiMQ-3

# Key recovery attack(KRA)

Complexity of HiMQ-3 against the KRAs using good keys is

$$C_{KRAg}(q, m, n) = C_{MQ}(q, m+n-1, n+min(o_1, o_2))$$

$$\mathcal{P} = (S \circ \Sigma^{-1}) \circ (\Sigma \circ \mathcal{F} \circ \Omega) \circ (\Omega^{-1} \circ T)$$

$$= S \circ \mathcal{F} \circ T \qquad ((S, \mathcal{F}, T) : \text{ equivalent key})$$

Figure: Equivalent Key of HiMQ-3



Figure: Good Key of HiMQ-3

#### Existential unforgeability of HiMQ 3

#### Theorem

If the MQ-problem in  $\mathcal{MQ}_{HiMQ-3}(\mathbb{F}_q,m,n)$  is  $(t\,,\varepsilon\,)$ -hard,  $HiMQ-3(\mathbb{F}_q,v,o_1,o_2,o_3)$  is  $(t,q_H,q_S,\varepsilon)$ -EUF-acma, for any t and  $\varepsilon$  satisfying

$$arepsilon \geq \mathbf{e} \cdot (q_S + 1) \cdot arepsilon \,, \quad t \, \geq t + q_H \cdot c_V + q_S \cdot c_S,$$

where e is the base of the natural logarithm, and  $c_S$  and  $c_V$  are time for a signature generation and a signature verification, respectively, where  $m=o_1+o_2+o_3$ , and n=v+m if the parameter set  $(\mathbb{F}_q,v,o_1,o_2,o_3)$  is chosen to be secure against the MinRank attack, HighRank attack, Kipnis-Shamir attack and KRAs using good keys.

#### Presentation Outline

- Algorithm Specification
- Security Analysis of HiMQ-3
- Sey feature of HiMQ-3
- Implementation and Comparison
- Advantages and limitations

#### Key feature of HiMQ 3

- Smaller public key size (compared to other MQ-signatures)
  - $\bullet$  Use an easily solvable system of quadratic equations in Oil  $\times$  Oil parts of 1st and 2nd layers

Good keys of HiMQ-3 in KRA are different from that of Rainbow.

Increase the complexity of key recovery attack

Reduce the number of variables

Smaller public key size, signature size and faster verification.

#### Key feature of HiMQ 3

- Smaller secret key size (compared to other MQ-signatures)
  - HiMQ-3 and HiMQ-3F use sparse quadratic polynomials in the 3rd layer.
  - HiMQ-3 also use sparse quadratic polynomials in the 1st and 2nd layer
  - In HiMQ-3P, we use a small random seed for secret key and recover the entire secret key from the seed in signing via PRNG.

#### Key feature of HiMQ 3

- Fast signature generation (compared to other MQ-signatures)
  - Use an easily solvable system of quadratic equations instead of Oil-Vinegar system.
  - No Gaussian elimination in 1st and 2nd layers.
  - In 3rd layer, Gaussian elimination for equations with smaller number of variables than UOV or Rainbow.

## Parameter Selection and Expected Security

- HiMQ-3F: char( $F_q$ )=2,  $o_1, o_2$  are odd and  $o_2 \ge o_3, v \ge 2o_1 + 1$
- HiMQ-3:  $char(F_q)=2$ ,  $o_1, o_2$  are odd and  $o_1 \ge o_2 \ge o_3, v \ge 2o_1 + 1$
- Complexities of HiMQ-3 and HiMQ-3F against All Known Attacks at 128 security level

| $(\mathbb{F}_q, v, o_1, o_2, o_3)$            | Direct           | KRA              | Kipnis-Shamir    | MinRank          | HighRank         |
|-----------------------------------------------|------------------|------------------|------------------|------------------|------------------|
| $HiMQ-3(\mathbb{F}_{2^8}, 31, 15, 15, 14)$    | $2^{131}$        | $2^{166}$        | 2 <sup>368</sup> | $2^{155}$        | 2 <sup>128</sup> |
| HiMQ-3F( $\mathbb{F}_{2^8}, 24, 11, 17, 15$ ) | 2 <sup>129</sup> | 2 <sup>140</sup> | 2 <sup>280</sup> | 2 <sup>131</sup> | 2 <sup>135</sup> |

#### Presentation Outline

- Algorithm Specification
- Security Analysis of HiMQ-3
- Key feature of HiMQ-3
- Implementation and Comparison
- Advantages and limitations

# Implementation results of HiMQ 3 and HiMQ 3F at the 128 bit Security Level.

• Implementation results (cycle)

| MQ-Scheme                                          | KeyGen      | Sign   | Verify  |        |
|----------------------------------------------------|-------------|--------|---------|--------|
| HiMQ-3( $\mathbb{F}_{2^8}$ , 31, 15, 15, 14)       | 50,593,934  | 21,594 | 17,960  | AVX2   |
|                                                    | 69,104,986  | 44,703 | 237,999 | ANSI C |
| $\overline{HiMQ-3F(\mathbb{F}_{2^8},24,11,17,15)}$ | 79,256,175  | 25,613 | 14,645  | AVX2   |
|                                                    | 107,559,999 | 64,773 | 184,402 | ANSI C |

• Key size and Signature size (Byte)

| MQ-Scheme                                     | Signature | PK      | SK     |
|-----------------------------------------------|-----------|---------|--------|
| HiMQ-3( $\mathbb{F}_{2^8}$ , 31, 15, 15, 14)  | 75        | 128,744 | 12,074 |
| HiMQ-3F( $\mathbb{F}_{2^8}$ , 24, 11, 17, 15) | 67        | 100,878 | 14,878 |
| HiMQ-3P( $\mathbb{F}_{2^8}$ , 24, 11, 17, 15) | 67        | 100,878 | 32     |

| $\begin{array}{c} \textbf{Scheme} \\ \lambda \end{array}$     | Sig. Size<br>(Bytes) | PK<br>(Bytes) | SK<br>(Bytes) | Sign<br>(Cycles)               | Verify<br>(Cycles) | СРИ                                              |
|---------------------------------------------------------------|----------------------|---------------|---------------|--------------------------------|--------------------|--------------------------------------------------|
| RSA-3072 <sup>e</sup><br>128<br>ECDSA-256 <sup>e</sup>        | 361<br>64            | 384<br>64     | 3072<br>96    | 8,802,242<br>163,994           | 87,360<br>310,048  | Intel Core i5-<br>6600 3.3 GHz<br>Intel Core i5- |
| 128                                                           | 1 200                | 1 221 222     | 1 011 744     | 607.040                        | 250.264            | 6600 3.3 GHz                                     |
| TESLA-416 <sup>t</sup><br>128                                 | 1,280                | 1,331,200     | 1,011,744     | 697,940                        | 250,264            | Intel Core i7-<br>4770K(Haswell)                 |
| TESLA-768 <sup>t</sup><br>> 128                               | 2,336                | 4,227,072     | 3,293,216     | 2,232,906                      | 863,790            | Intel Core i7-<br>4770K(Haswell)                 |
| BĹISS-BI<br>128                                               | 700                  | 875           | 250           | 358,400                        | 102,000            | Intel Core i7<br>3.4 GHz                         |
| XMSS (h = 20)<br>256                                          | 3,584                | 1,536         | 2,662         | 12,488,458                     | -                  | Intel Core i7-<br>4770 3.5GHz                    |
| XMSS-T <sup>t</sup> ( $h = 60$ )                              | 2,969                | 66            | 2,252         | 34,862,003                     | -                  | Intel Core i7-<br>4770 3.5GHz                    |
| SPHINCS 256 <sup>5</sup><br>256                               | 41,000               | 1,056         | 1,088         | 51,636,372                     | 1,451,004          | Intel Xeon E3-<br>1275 3.5 GHz                   |
| Parallel-CFS<br>80                                            | 75                   | 20,968,300    | 4,194,300     | 4,200,000,000                  | -                  | Intel Xeon<br>W3670 3.2GHz                       |
| MQDSS-31-64<br>> 128<br>enTTS                                 | 40,952               | 72            | 64            | 8,510,616                      | 5,752,616          | Intel Core i7-<br>4770K 3.5GHz                   |
| (F <sub>28</sub> , 15, 60, 88)                                | 88                   | 234,960       | 13,051        | -                              | -                  | -                                                |
| Rainbow<br>(F <sub>28</sub> , 36, 21, 22)                     | 79                   | 139,320       | 105,006       | 60,361                         | 48,079             | Intel Core i5-<br>6600 3.3 GHz                   |
| $128$ <b>HiMQ-3</b> $(\mathbb{F}_{2^8}, 31, 15, 15, 14)$      | 75                   | 128,744       | 12,074        | 21,594                         | 17,960             | Intel Core i7-<br>6700 3.4 GHz                   |
| 128<br><b>HiMQ-3F</b><br>$(\mathbb{F}_{2^8}, 24, 11, 17, 15)$ | 67                   | 100,878       | 14,878        | 25,613                         | 14,645             | Intel Core i7-<br>6700 3.4 GHz                   |
| $^{128}_{	extbf{HiMQ-3P}}$ ( $\mathbb{F}_{2^8}$ ,24,11,17,15) | 67                   | 100,878       | 32            | 25,613+<br>20,011 <sup>P</sup> | 14,645             | Intel Core i7-<br>6700 3.4 GHz                   |
| T-N- D-0                                                      | l<br>                | C: I C:       |               | Salarana and all a Cla         |                    | Lacata                                           |

 $\textbf{Table} \ \mathsf{Performance}, \ \mathsf{Key} \ \mathsf{Sizes} \ \mathsf{and} \ \mathsf{Signature} \ \mathsf{Sizes} \ \mathsf{of} \ \mathsf{Schemes} \ \mathsf{at} \ \mathsf{the} \ \mathsf{Classical} \ \mathsf{Security} \ \mathsf{Levels}.$ 

#### Presentation Outline

- Algorithm Specification
- Security Analysis of HiMQ-3
- Key feature of HiMQ-3
- Implementation and Comparison
- 6 Advantages and limitations

#### Advantages and limitations

- Advantages of HiMQ-3
  - High speed in signing and verifying
     Attractive in a small device with limited computational resources
     High speed after adapting countermeasure against side-channel attacks
  - Small signature size (comparable to ECDSA-256)
  - Small public key and secret key size compared to other MQ-signatures
- Need to reduce the public key size of HiMQ-3.