High Speed MQ Signature: HiMQ 3

Cheol-Min Park (NIMS)

Joint work with Kyung-Ah Shim, Aeyoung Kim (NIMS) and Namhun Koo (SKKU)

The First PQC Standardization Conference April 12, 2018

Presentation Outline

（1）Algorithm Specification
（2）Security Analysis of HiMQ－3
（3）Key feature of HiMQ－3
（4）Implementation and Comparison
（5）Advantages and limitations

General Structure of MQ Signature

- F_{q} : finite field with q elements
- $\mathcal{F}: F_{q}^{n} \rightarrow F_{q}^{m}$ by $\mathcal{F}(X)=\left(\mathcal{F}^{(1)}(x), \ldots, \mathcal{F}^{(m)}(x)\right)$ for $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- $\mathcal{T}: F_{q}^{n} \rightarrow F_{q}^{n}, \mathcal{S}: F_{q}^{m} \rightarrow F_{q}^{m}$ invertible affine maps
- $\mathcal{P}=\mathcal{S} \circ \mathcal{F} \circ \mathcal{T}: F_{q}^{n} \rightarrow F_{q}^{m}$
- Public key: \mathcal{P}, Secret key: $\mathcal{S}, \mathcal{F}, \mathcal{T}$

Building Blocks of \mathcal{F}

- Solvable System of Quadratic Equations \mathcal{Q}
- char $\left(F_{q}\right)=2$, is odd.
- $\mathcal{Q}:\left(x_{1} x_{2}, x_{2} x_{3}, \ldots, x x_{1}\right)=\left(\beta_{1}, \beta_{2}, \ldots, \beta\right)$ for $\beta_{i} \quad F_{q}$

$$
\begin{array}{r}
\left(x_{1} x_{2}\right) \times\left(x_{2} x_{3}\right) \times \cdots \times\left(x x_{1}\right)=\left(\prod_{i=1} x_{i}\right)^{2}=\left(\prod_{i=1} \beta_{i}\right) \\
\left(\prod_{i=1} x_{i}\right)=\sqrt{\left(\prod_{i=1} \beta_{i}\right)} \\
\left(x_{2} x_{3}\right) \times\left(x_{4} x_{5}\right) \times \cdots \times\left(x_{-1} \times\right)=\left(\prod_{i=2} x_{i}\right)=\left(\prod_{i: \text { even }} \beta_{i}\right) \tag{3}
\end{array}
$$

Using E.q. (2) and E.q. (3), we can obtain x_{1} and so x_{2}, \ldots, x.

Central map \mathcal{F}

- $\mathcal{F}(X)=\left(\mathcal{F}^{(1)}(x), \ldots, \mathcal{F}^{(m)}(x)\right)$ where

$$
\begin{aligned}
& \left\{\begin{array}{c}
\mathcal{F}^{(1)}(x)=\Phi_{1}\left(\mathbf{x}_{\mathbf{v}}\right)+\delta_{1} x_{v+1} x_{v+2} \quad\left(\mathbf{x}_{\mathbf{v}}=\left(x_{1}, \ldots, x_{v}\right)\right) \\
\mathcal{F}^{(2)}(x)=\Phi_{2}\left(\mathbf{x}_{\mathbf{v}}\right)+\delta_{2} x_{v+2} x_{v+3} \\
\vdots \\
\vdots \\
\mathcal{F}^{\left(o_{1}\right)}(x)=\Phi_{o_{1}}\left(\mathbf{x}_{\mathbf{v}}\right)+\delta_{o_{1}} x_{v+o_{1}} x_{v+1}
\end{array}\right. \\
& \left\{\begin{array}{c}
\mathcal{F}^{\left(o_{1}+1\right)}(x)=\Psi_{1}\left(\mathbf{x}_{\mathbf{v}_{1}}\right)+\delta_{o_{1}+1} x_{v_{1}+1} x_{v_{1}+2} \quad\left(\mathbf{x}_{\mathrm{v}_{1}}=\left(x_{1}, \ldots, x_{v+o_{1}}\right)\right) \\
\mathcal{F}^{\left(o_{1}+2\right)}(x)=\Psi_{2}\left(\mathbf{x}_{\mathbf{v}_{1}}\right)+\delta_{o_{1}+2} x_{v_{1}+2} x_{v_{1}+3} \\
\vdots \\
\vdots \\
\mathcal{F}^{\left(o_{1}+o_{2}\right)}(x)=\Psi_{o_{2}}\left(\mathbf{x}_{\mathbf{v}_{1}}\right)+\delta_{o_{1}+o_{2} x_{v_{1}+o_{2}} x_{v_{1}+1}}
\end{array}\right. \\
& \left\{\begin{array}{c}
\mathcal{F}^{\left(o_{1}+o_{2}+1\right)}(x)=\sum_{v+1 \leq i \leq j \leq v_{1}} \beta_{j, i}^{(1)} x_{i} x_{j}+\Theta_{1}(x)+\Theta_{1}(x)+{ }_{1} x_{o_{1}+o_{2}+1} \\
\mathcal{F}^{\left(o_{1}+o_{2}+2\right)}(x)=\sum_{v+1 \leq i \leq j \leq v_{1}} \beta_{j, i}^{(2)} x_{i} x_{j}+\Theta_{2}(x)+\Theta_{2}(x)+{ }_{2} x_{o_{1}+o_{2}+2} \\
\vdots \\
\mathcal{F}^{\left(o_{1}+o_{2}+o_{3}\right)}(x)=\sum_{v+1 \leq i \leq j \leq v_{1}} \beta_{j, i}^{\left(o_{3}\right)} x_{i} x_{j}+\Theta_{o_{3}}(x)+\Theta_{o_{3}}(x)+o_{o_{3}} x_{o_{1}+o_{2}+o_{3}}
\end{array}\right.
\end{aligned}
$$

Central map \mathcal{F} of HiMQ 3F

- $\Phi_{k}(x)=\sum_{1 \leq i \leq j \leq v} \alpha_{i, j}^{(k)} x_{i} x_{j}, \quad \Psi_{k}(x)=\sum_{i=1}^{v} \sum_{j=v+1}^{v+o_{1}} \alpha_{i, j}^{\left(o_{1}+k\right)} x_{i} x_{j}$
- $\Theta_{i}(\mathbf{x})=\sum_{j=1}^{v_{1}} \gamma_{i, j} x_{i} x_{v_{1}+(i+j-1)\left(\bmod o_{3}\right)}$,
$\Theta_{i}(\mathbf{x})=\sum_{j=1}^{v_{2}} \gamma_{i, j} x_{i} x_{v_{2}+(i+j-1)\left(\bmod o_{3}\right)}$
- All the quadratic terms in $\Theta_{i}(\mathbf{x})$ and $\Theta_{i}(\mathbf{x})\left(i=1, \cdots, o_{3}\right)$ don't overlap and symmetric matrix of the quadratic part of each $\mathcal{F}^{(i)}$ has full rank for $i=o_{1}+o_{2}+1, \cdots, m$.
$v \geq 2 o_{1}+1$ and $o_{2} \geq o_{3}$.

Central map \mathcal{F} of HiMQ 3

- $\Phi_{i}(\mathbf{x})=\sum_{j=1}^{v} \alpha_{i, j} x_{j} x_{1+(i+j-1)(\bmod v),}$
$\Psi_{i}(\mathbf{x})=\sum_{j=1}^{v} \alpha_{i, j} x_{j} x_{v+(i+j-1)\left(\bmod o_{1}\right)}$.
- $\Theta_{i}(\mathbf{x}), \Theta_{i}(\mathbf{x})$ is the same as HiMQ-3F
- All the quadratic terms in $\Phi_{i}(\mathbf{x})\left(i=1, \cdots, o_{1}\right)$ and $\Psi_{i}(\mathbf{x})$ ($i=1, \cdots, o_{2}$) don't overlap and symmetric matrix of the quadratic part of each $\mathcal{F}^{(i)}$ has full rank for $i=o_{1}+o_{2}+1, \cdots, m$.
$v \geq 2 o_{1}+1$ and $o_{1} \geq o_{2} \geq o_{3}$.

Symmetric Matrices of the Quadratic Parts of \mathcal{F} for HiMQ 3F

Symmetric Matrices of the Quadratic Parts of \mathcal{F} for HiMQ 3

How to invert \mathcal{F}

- Given $\xi=\left(\xi_{1}, \ldots, \xi_{m}\right)$, find s such that $\mathcal{F}(s)=\xi$

1. Choose a random Vinegar vector $s_{v}=\left(s_{1}, \ldots, s_{v}\right)$ and plug it into $\mathcal{F}^{(i)}\left(1 \leq i \leq o_{1}\right)$.
2. Solve a quadratic system of o_{1} equations with o_{1} variables

$$
\left(\delta_{1} x_{v+1} x_{v+2}, \ldots, \delta_{o_{1}} x_{v+o_{1}} x_{v+1}\right)=\left(\xi_{1}-\Phi_{1}\left(s_{v}\right), \ldots, \xi_{o_{1}}-\Phi_{o_{1}}\left(s_{v}\right)\right)
$$

Find solution $\left(s_{v+1}, \ldots, s_{v+o_{1}}\right)$ by using E.q. (2) and E.q. (3).
3. To Invert $\mathcal{F}^{(i)}\left(o_{1}+1 \leq i \leq o_{1}+o_{2}\right)$ in the 2nd layer is similar to Step 1 and Step 2.
4. Plug $\left(s_{1}, \ldots, s_{V+o_{1}+o_{2}}\right)$ into the polynomials $\mathcal{F}^{(i)}\left(o_{1}+o_{2}+1 \leq i \leq m\right)$.
5. Solve a linear system of o_{3} equations with o_{3} variables and find solution $\left(s_{\mathrm{v}+o_{1}+o_{2}}, \ldots, s_{n}\right)$ by Gaussian elimination.

Presentation Outline

Algorithm Specification

2 Security Analysis of HiMQ-3
(3) Key feature of HiMQ-3
(4) Implementation and Comparison
(5) Advantages and limitations

Underlying problems for security of HiMQ 3

- Polynomial System Solving (PoSSo) Problem: Given a system $\mathcal{P}=\left(P^{(1)}, \cdots, P^{(m)}\right)$ of m nonlinear polynomial equations defined over \mathbb{F}_{q} with degree of d in variables x_{1}, \cdots, x_{n} and $\mathbf{y}=\left(y_{1}, \cdots, y_{m}\right) \quad \mathbb{F}_{q}^{m}$, find values $\left(x_{1}, \cdots, x_{n}\right) \quad \mathbb{F}_{q}^{n}$ such that $P^{(1)}\left(x_{1}, \cdots, x_{n}\right)=y_{1}, \cdots, P^{(m)}\left(x_{1}, \cdots, x_{n}\right)=y_{m}$.
- EIP (Extended Isomorphism of Polynomials) Problem: Given a nonlinear multivariate system \mathcal{P} such that $\mathcal{P}=S \circ \mathcal{F} \circ T$ for linear or affine maps S and T, and \mathcal{F} belonging to a special class of nonlinear polynomial system \mathcal{C}, find a decomposition of \mathcal{P} such that $\mathcal{P}=S \circ \mathcal{F} \circ T$ for linear or affine maps S and T, and $\mathcal{F} \quad \mathcal{C}$.
- MinRank Problem: Let $m, n, r, k \quad \mathbb{N}$ and $r, m<n$. The $\operatorname{MinRank}(r)$ problem is, given $\left(M_{1}, \cdots, M_{l}\right) \quad \mathbb{F}_{q}^{m \times n}$, find a non-zero k-tuple $\left(\lambda_{1}, \cdots, \lambda_{k}\right) \quad \mathbb{F}_{q}^{k}$ such that $\operatorname{Rank}\left(\sum_{i=1}^{k} \lambda_{i} M_{i}\right) \leq r$.

Direct attack

- Complexity of HiMQ-3 against the direct attacks is estimated as

$$
C_{\text {Direct }}(q, m, n)=C_{M Q}(q, m, n)
$$

where $C_{M Q}(q, m, n)$ denotes complexity of solving a semi-regular system of m equations in n variables defined over \mathbb{F}_{q} by using HF5 algorithm.

- Running Time (Second) for Solving Two Types of Quadratic Systems over $\mathbb{F}_{2^{8}}$.

$\left(v, o_{1}, o_{2}, o_{3}\right)$	$(7,3,3,2)$	$(7,3,3,3)$	$(9,3,3,3)$	$(11,5,3,2)$	$(11,5,4,3)$	$(11,5,4,4)$	$(11,5,5,4)$
Random System	0.145	0.602	0.618	3.003	112.861	639.576	5753.369
HiMQ-3	0.134	0.593	0.57	3.203	109.823	756	5712.19

Rank attack

- MinRank Attacks: Complexity of HiMQ-3 against the MinRank attacks is

$$
C_{M R}\left(q, v, o_{1}, m\right)=o_{1} \cdot q^{v-o_{1}+3}
$$

Figure: 1st layer of HiMQ-3

- HighRank Attacks: Complexity of HiMQ-3 against the HighRank attacks is

$$
C_{H R}\left(q, o_{3}, n\right)=q^{o_{3}} \cdot \frac{n^{3}}{6}
$$

Kipnis Shamir Attacks

－Complexity of HiMQ－3 against the Kipnis－Shamir Attacks is

$$
C_{K S}\left(q, v, o_{1}, o_{2}, o_{3}\right)=q^{v+o_{1}+o_{2}-o_{3}}
$$

Figure： $\mathcal{S} \circ \mathcal{F}$ of HiMQ－3

Key recovery attack(KRA)

- Complexity of HiMQ-3 against the KRAs using good keys is

$$
\begin{aligned}
& C_{K R A g}(q, m, n)=C_{M Q}\left(q, m+n-1, n+\min \left(o_{1}, o_{2}\right)\right) \\
& \quad \begin{array}{l}
\mathcal{P}=\left(S \circ \Sigma^{-1}\right) \circ(\Sigma \circ \mathcal{F} \circ \Omega) \circ\left(\Omega^{-1} \circ T\right) \\
=S \circ \mathcal{F} \circ T \quad((S, \mathcal{F}, T): \text { equivalent key })
\end{array}
\end{aligned}
$$

Figure: Equivalent Key of HiMQ-3

Figure: Good Key of HiMQ-3

Existential unforgeability of HiMQ 3

Theorem

If the MQ-problem in $\mathcal{M} \mathcal{Q}_{\text {HiMQ-3 }}\left(\mathbb{F}_{q}, m, n\right)$ is (t, ε)-hard, HiMQ-3($\left.\mathbb{F}_{q}, v, o_{1}, o_{2}, o_{3}\right)$ is $\left(t, q_{H}, q_{S}, \varepsilon\right)$-EUF-acma, for any t and ε satisfying

$$
\varepsilon \geq \mathrm{e} \cdot\left(q_{S}+1\right) \cdot \varepsilon, \quad t \geq t+q_{H} \cdot c_{V}+q_{S} \cdot c_{S},
$$

where e is the base of the natural logarithm, and c_{S} and c_{V} are time for a signature generation and a signature verification, respectively, where $m=o_{1}+o_{2}+o_{3}$, and $n=v+m$ if the parameter set $\left(\mathbb{F}_{q}, v, o_{1}, o_{2}, o_{3}\right)$ is chosen to be secure against the MinRank attack, HighRank attack, Kipnis-Shamir attack and KRAs using good keys.

Presentation Outline

(1) Algorithm Specification
(2) Security Analysis of HiMQ-3
(3) Key feature of HiMQ-3
(4) Implementation and Comparison
(5) Advantages and limitations

Key feature of HiMQ 3

- Smaller public key size (compared to other MQ-signatures)
- Use an easily solvable system of quadratic equations in Oil \times Oil parts of 1st and 2nd layers

Good keys of HiMQ-3 in KRA are different from that of Rainbow.
Increase the complexity of key recovery attack
Reduce the number of variables
Smaller public key size, signature size and faster verification.

Key feature of HiMQ 3

- Smaller secret key size (compared to other MQ-signatures)
- HiMQ-3 and HiMQ-3F use sparse quadratic polynomials in the 3rd layer.
- HiMQ-3 also use sparse quadratic polynomials in the 1st and 2nd layer
- In HiMQ-3P, we use a small random seed for secret key and recover the entire secret key from the seed in signing via PRNG.

Key feature of HiMQ 3

- Fast signature generation (compared to other MQ-signatures)
- Use an easily solvable system of quadratic equations instead of Oil-Vinegar system.
- No Gaussian elimination in 1st and 2nd layers.
- In 3rd layer, Gaussian elimination for equations with smaller number of variables than UOV or Rainbow.

Parameter Selection and Expected Security

- HiMQ-3F: $\operatorname{char}\left(F_{q}\right)=2, \quad o_{1}, o_{2}$ are odd and $o_{2} \geq o_{3}, v \geq 2 o_{1}+1$
- HiMQ-3: $\operatorname{char}\left(F_{q}\right)=2, \quad o_{1}, o_{2}$ are odd and $o_{1} \geq o_{2} \geq o_{3}, v \geq 2 o_{1}+1$
- Complexities of HiMQ-3 and HiMQ-3F against All Known Attacks at 128 security level

$\left(\mathbb{F}_{q}, v, o_{1}, o_{2}, o_{3}\right)$	Direct	KRA	Kipnis-Shamir	MinRank	HighRank
HiMQ-3 $\left(\mathbb{F}_{2^{8}}, 31,15,15,14\right)$	2^{131}	2^{166}	2^{368}	2^{155}	2^{128}
$\operatorname{HiMQ}-3 F\left(\mathbb{F}_{2^{8}}, 24,11,17,15\right)$	2^{129}	2^{140}	2^{280}	2^{131}	2^{135}

Presentation Outline

(1) Algorithm Specification
(2) Security Analysis of HiMQ-3
(3) Key feature of HiMQ-3

4 Implementation and Comparison
(5) Advantages and limitations

Implementation results of HiMQ 3 and HiMQ 3F at the 128 bit Security Level.

- Implementation results (cycle)

MQ-Scheme	KeyGen	Sign	Verify	
HiMQ-3($\left.\mathbb{F}_{2^{8}}, 31,15,15,14\right)$	$50,593,934$	21,594	17,960	AVX2
	$69,104,986$	44,703	237,999	ANSI C
HiMQ-3F $\left(\mathbb{F}_{2^{8}}, 24,11,17,15\right)$	$79,256,175$	25,613	14,645	AVX2
	$107,559,999$	64,773	184,402	ANSI C

- Key size and Signature size (Byte)

MQ-Scheme	Signature	PK	SK
$\operatorname{HiMQ}-3\left(\mathbb{F}_{2^{8}}, 31,15,15,14\right)$	75	128,744	12,074
$\operatorname{HiMQ}-3 \mathrm{~F}\left(\mathbb{F}_{2^{8}}, 24,11,17,15\right)$	67	100,878	14,878
$\operatorname{HiMQ} 3 \mathrm{P}\left(\mathrm{F}_{2^{8}}, 24,11,17,15\right)$	67	100,878	32

Table Performance, Key Sizes and Signature Sizes of Schemes at the Classical Security Levels.

Presentation Outline

(1) Algorithm Specification
(2) Security Analysis of HiMQ-3
(3) Key feature of HiMQ-3
(4) Implementation and Comparison
(5) Advantages and limitations

Advantages and limitations

- Advantages of HiMQ-3
- High speed in signing and verifying

Attractive in a small device with limited computational resources
High speed after adapting countermeasure against side-channel attacks

- Small signature size (comparable to ECDSA-256)
- Small public key and secret key size compared to other MQ-signatures
- Need to reduce the public key size of HiMQ-3.

