
In-Parameter-Order: A Test Generation
Strategy for Pairwise Testing

Jeff Lei

Department of Computer Science and Engineering

The Univ. of Texas at Arlington

6/21/2005

Outline

� Introduction

� The IPO Strategy

� Related Work

� 3-Way Testing and Beyond

� Conclusion

Pairwise Testing and Beyond 2

Why Testing?

� Modern society is increasingly dependent on the
quality of software systems.

� Software failure can cause severe consequences,
including loss of human life

� Testing is the most widely used approach to
ensuring software quality

Pairwise Testing and Beyond 3

The Testing Process

The testing process consists of three stages:

� Test Generation – Generate test data inputs

� Test Execution – Test setup and the actual test
runs

� Test Results Evaluation – Check if the output is in
line with expectations

Pairwise Testing and Beyond 4

The Challenge

� Testing is labor intensive and can be very costly

� often estimated to consume more than 50% of the

development cost

� Exhaustive testing is impractical due to resource
constraints

� How to make a good trade-off between test
effort and quality assurance?

Pairwise Testing and Beyond 5

Pairwise Testing

� Given any pair of input parameters of a system,
every combination of valid values of the two
parameters be covered by at least one test

� A special case of combinatorial testing that
requires n-way combinations be tested
� n can be 1, 2, …, or the total number of parameters in the

system

� Based on simple specifications, and does not need
to look into the implementation details

Pairwise Testing and Beyond 6

Example (1)

Exhaustive testing requires 81 tests = 3 * 3 * 3 * 3.

Pairwise Testing and Beyond 7

Example (2)

Pairwise Testing and Beyond 8

Why Pairwise?

� Many faults are caused by the interactions
between two parameters

� 92% block coverage, 85% decision coverage, 49% p-uses
and 72% c-uses

� Not practical to cover all the parameter
interactions

� Consider a system with n parameter, each with m values.
How many interactions to be covered?

� A “good” trade-off between test effort and test
coverage

� For a system with 20 parameters each with 15 values,
pairwise testing only requires less than 412 tests,
whereas exhaustive testing requires 1520 tests.

Pairwise Testing and Beyond 9

Outline

� Introduction

� The IPO Strategy

� Related Work

� 3-Way Testing and Beyond

� Conclusion

Pairwise Testing and Beyond 10

NP-Completeness

� The problem of generating a minimum pairwise test
set is NP-complete.

� Can be reduced to the vertex cover problem

� Unlikely to find a polynomial time algorithm to
solve the problem.

� Greedy algorithms are the first thing coming into the
mind of a computer scientist

Pairwise Testing and Beyond 11

The Framework

Strategy In-Parameter-Order
begin

/* for the first two parameters p1 and p2 */

T := {(v1, v2) | v1 and v2 are values of p1 and p2, respectively}

if n = 2 then stop;

/* for the remaining parameters */

for parameter pi, i = 3, 4, …, n do

begin

/* horizontal growth */

for each test (v1, v2, …, vi-1) in T do

replace it with (v1, v2, …, vi-1, vi), where vi is a value of pi
/* vertical growth */
while T does not cover all pairs between pi and

each of p1, p2, …, pi-1 do
add a new test for p1, p2, …, pi to T;

end
end

Pairwise Testing and Beyond 12

Horizontal Growth

Pairwise Testing and Beyond 13

Vertical Growth

Pairwise Testing and Beyond 14

Example (1)

Consider a system with the following parameters and
values:

� parameter A has values A1 and A2

� parameter B has values B1 and B2, and

� parameter C has values C1, C2, and C3

Pairwise Testing and Beyond 15

Example (2)

A B

A1 B1

A1 B2

A2 B1

A2 B2

A B C
A1 B1 C1
A1 B2 C2
A2 B1 C3
A2 B2 C1

A B C

A1 B1 C1

A1 B2 C2

A2 B1 C3

A2 B2 C1

A2 B1 C2

A1 B2 C3

Horizontal Growth Vertical Growth

Pairwise Testing and Beyond 16

PairTest

� A Java tool that implements the IPO strategy

� Supports the following types of test generation

� Account for relations and constraints
� Extend from an existing test set
� Modify/extend an existing test set after changes of

parameters, values, relations and constraints

� Has been used in IBM and software engineering
classes at NCSU

Pairwise Testing and Beyond 17

Empirical Results (1)

Let n be the number of parameters, and d the domain size of
each parameter. The size of a pairwise test set is in the order
of O(log n) and O(d2).

Pairwise Testing and Beyond 18

Empirical Results (2)

Pairwise Testing and Beyond 19

Outline

� Introduction

� The IPO Strategy

� Related Work

� 3-Way Testing and Beyond

� Conclusion

Pairwise Testing and Beyond 20

Classification

� Computational methods that are mainly developed
by computer scientists

� AETG (from Telcordia), TCG (from JPL/NASA), DDA
(from ASU), PairTest

� Algebraic methods that are mainly developed by
mathematicians

� Orthogonal Arrays
� Recursive Construction

Pairwise Testing and Beyond 21

AETG (1)

� Starts with an empty set and adds one (complete)
test at a time

� Each test is locally optimized to cover the most
number of missing pairs:

� Generate a random order of the parameters
� Use a greedy algorithm to construct a test that covers

the most uncovered pairs
� Repeat the above two steps for a given number of times

(suggested 50), and select the best one

Pairwise Testing and Beyond 22

AETG (2)

A B C

Adds the 1st test Adds the 2nd test Adds the last test

A B C

A1 B1 C1

A B C

A1 B1 C1

A1 B2 C2

A B C

A1 B1 C1

A1 B2 C2

A2 B1 C3

A2 B2 C1

A2 B1 C2

A1 B2 C3

Pairwise Testing and Beyond 23

AETG vs IPO

� AETG is fundamentally non-deterministic, whereas
IPO is deterministic

� AETG has a higher order of complexity, both in
terms of time and space, than IPO

� AETG is a commercial tool, and its license is very
expensive, whereas IPO is open to the public.

Pairwise Testing and Beyond 24

Orthogonal Arrays (1)

� An orthogonal array OAλ(N; k, v, t) is an N × k
array on v symbols such that every N × t sub-array
contains all tuples of size t from v symbols exactly λ
times.

� N – Number of test cases
� k – Number of parameters
� v – Number of values of each parameter
� t – Degree of interaction
� λ - 1 for software testing and is often omitted

� For example, Table 2 is an orthogonal array OA(9;
4, 3, 2)

Pairwise Testing and Beyond 25

Orthogonal Arrays (2)

OA (9; 4, 3, 2)

Pairwise Testing and Beyond 26

Orthogonal Arrays (3)

� Orthogonal arrays can be constructed very fast
and are always optimal

� Any extra test will cause a pair to be covered for more
than once

� However, there are several limitations:
� Orthogonal arrays do not always exist
� Existing methods often require |v| be a prime power and

k be less than |v| + 1.
� Every parameter must have the same number of values
� Every t-way interaction must be covered at the same

number of times

Pairwise Testing and Beyond 27

Recursive Construction (1)

� Covering arrays are a more general structure,
which requires every t-way interaction be covered at
least once

� Constructing a covering array from one or more
covering arrays with smaller parameter sets

� Recursive construction can be fast, but it also has
restrictions on the number of parameters and the
domain sizes

Pairwise Testing and Beyond 28

Recursive Construction (2)

Use OA(27; 4, 3, 3) and OA(9; 4, 3, 2) to construct CA(27; 8,
3, 3) = 27 + 9 + 9 = 45

0 -> 02 0 -> 01 Double each column 1 -> 10
1 -> 12

2 -> 21
2 -> 20

Pairwise Testing and Beyond 29

Outline

� Introduction

� The IPO Strategy

� Related Work

� 3-Way Testing and Beyond

� Conclusion

Pairwise Testing and Beyond 30

Why beyond 2-way?

� Software failures may be caused by more than two
parameters

� A recent NIST study by Rick Kuhn indicates that

failures can be triggered by interactions up to 6

parameters

� Increased coverage leads to a higher level of
confidence

� Safety-critical applications have very strict

requirements on test coverage

Pairwise Testing and Beyond 31

The Challenges

� The number of tests may increase rapidly as the
degree of interactions increases

� Assume that each parameter has 10 values. Then,
pairwise testing requires at least 100 tests, 3-way
testing at least 103 tests, 4-way testing at least 104

tests.

� Test generation algorithms must be more sensitive
in terms of both time and space requirements

� The need for test automation becomes even more
serious

� Impractical to manually execute and inspect the results
of a large number of test runs

Pairwise Testing and Beyond 32

State-of-the-Art

� Both algebraic and computational methods can be
extended to 3-way testing and beyond

� However, algebraic methods have fundamental
restrictions on the systems they can apply.

� Computational methods are more flexible, but none
of them are optimized for n-way testing with n > 2.

Pairwise Testing and Beyond 33

Opportunities (1)

� Possible ideas to reduce the number of tests
� Domain partitioning – identify equivalence values of each

parameter
� Parameter constraints – exclude combinations that are

not meaningful from the domain semantics
� Fault-oriented test generation – only include

combinations that may contribute to one or more specific
classes of faults

� Test budget – maximize the coverage of n-way

interactions within a given number of tests

Pairwise Testing and Beyond 34

Opportunities (2)

� Possible ways to improve the test generation
algorithms

� Combination of algebraic and computational methods,
•	 e.g., computational methods can be used to compute a

starter covering array and then recursive construction can
be used to expand the array

Pairwise Testing and Beyond 35

Opportunities (3)

� Possible ideas for test automation
� Test harness that can automate test setup, test

execution, and test results evaluation

� Automatically generate test oracles from a high level

specification or by integration with tools based on formal
methods, e.g., model checkers

Pairwise Testing and Beyond 36

Outline

� Introduction

� The IPO Strategy

� Related Work

� 3-Way Testing and Beyond

� Conclusion

Pairwise Testing and Beyond 37

Conclusion

� The problem of combinatorial testing is well-
defined and has been used widely in practice.

� The IPO strategy is deterministic, has a lower
order of complexity, and still produces competitive
results.

� Algebraic methods, if applicable, are fast and can
be optimal, whereas computational methods are
heuristic but very flexible.

� Going beyond 2-way testing presents challenges
and opportunities to the area of combinatorial
testing.

Pairwise Testing and Beyond 38

