
Introduction to
Combinatorial Testing

Rick Kuhn

National Institute of
Standards and Technology

Gaithersburg, MD

Carnegie-Mellon University, 7 June 2011

 What is NIST and why are we doing this?
• A US Government agency

• The nation’s measurement and testing
 laboratory – 3,000 scientists, engineers,
 and support staff including
 3 Nobel laureates

Analysis of engineering failures,
including buildings, materials, and ...

Research in physics, chemistry,
materials, manufacturing, computer
science

Software Failure Analysis
• We studied software failures in a variety of
 fields including 15 years of FDA medical
 device recall data

• What causes software failures?

• logic errors?

• calculation errors?

• interaction faults?

• inadequate input checking? Etc.

• What testing and analysis would have prevented failures?

• Would statement coverage, branch coverage, all-values, all-pairs etc.
 testing find the errors?

Interaction faults: e.g., failure occurs if
 pressure < 10 (1-way interaction <= all-values testing catches)
 pressure < 10 & volume > 300 (2-way interaction <= all-pairs testing catches)

Software Failure Internals
• How does an interaction fault manifest itself in code?

Example: pressure < 10 & volume > 300 (2-way interaction)

if (pressure < 10) {

 // do something

 if (volume > 300) { faulty code! BOOM! }

 else { good code, no problem}

} else {

 // do something else

}

A test that included pressure = 5 and volume = 400
would trigger this failure

• Pairwise testing commonly applied to software
• Intuition: some problems only occur as the result of

an interaction between parameters/components
• Tests all pairs (2-way combinations) of variable

values
• Pairwise testing finds about 50% to 90% of flaws

Pairwise testing is popular,
but is it enough?

90% of flaws.
Sounds pretty good!

 Finding 90% of flaws is pretty good, right?

“Relax, our engineers found
 90 percent of the flaws.”

I don't think I
want to get on
that plane.

How about hard-to-find flaws?
•Interactions e.g., failure occurs if

• pressure < 10 (1-way interaction)

• pressure < 10 & volume > 300 (2-way interaction)

• pressure < 10 & volume > 300 & velocity = 5
 (3-way interaction)

• The most complex failure reported required
 4-way interaction to trigger

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Interaction

%
 d

et
ec

te
d

Interesting, but
that's just one kind
of application.

NIST study of 15
years of FDA
medical device
recall data

How about other applications?
 Browser (green)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

These faults more
complex than
medical device
software!!

Why?

And other applications?

 Server (magenta)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Still more?
 NASA distributed database
 (light blue)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Even more?
Traffic Collision Avoidance System module

(seeded errors) (purple)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Finally
 Network security (Bell, 2006)
 (orange)

 Curves appear
to be similar
across a variety
of application
domains.

Why this
distribution?

What causes this distribution?

One clue: branches in avionics software.
7,685 expressions from if and while statements

Comparing with Failure Data
Branch
statements

• Maximum interactions for fault triggering
for these applications was 6

• Much more empirical work needed
• Reasonable evidence that maximum interaction

strength for fault triggering is relatively small

So, how many parameters are
involved in really tricky faults?

How does it help
me to know this?

How does this knowledge help?

Still no silver
bullet. Rats!

Biologists have a “central dogma”, and so do we:

If all faults are triggered by the interaction of t or fewer variables,
then testing all t-way combinations can provide strong assurance

(taking into account: value propagation issues, equivalence
partitioning, timing issues, more complex interactions, . . .)

What is combinatorial testing?
A simple example

How Many Tests Would It Take?

 There are 10 effects, each can be on or off
 All combinations is 210 = 1,024 tests
 What if our budget is too limited for these tests?
 Instead, let’s look at all 3-way interactions …

 There are = 120 3-way interactions.

 Naively 120 x 23 = 960 tests.
 Since we can pack 3 triples into each test, we

need no more than 320 tests.
 Each test exercises many triples:

Now How Many Would It Take?

We can pack a lot into one test, so what’s the
smallest number of tests we need?

10
3

0 1 1 0 0 0 0 1 1 0

A covering array

Each row is a test:
Each column is
a parameter:

Each test covers = 120 3-way combinations

Finding covering arrays is NP hard

All triples in only 13 tests, covering 23 = 960 combinations

10
3

10
3

Ordering Pizza

Simplified pizza ordering:

6x4x4x4x4x3x2x2x5x2
 = 184,320 possibilities

6x217x217x217x4x3x2x2x5x2
= WAY TOO MUCH TO TEST

Ordering Pizza Combinatorially
Simplified pizza ordering:

6x4x4x4x4x3x2x2x5x2
 = 184,320 possibilities

2-way tests: 32

3-way tests: 150

4-way tests: 570

5-way tests: 2,413

6-way tests: 8,330

 If all failures involve 5 or fewer
parameters, then we can have
confidence after running all 5-way
tests.

• Suppose we have a system with on-off switches:

A larger example

• 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests

How do we test this?

• 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests
• If only 3-way interactions, need only 33 tests
• For 4-way interactions, need only 85 tests

What if we knew no failure involves more
than 3 switch settings interacting?

Two ways of using combinatorial
testing

Use combinations here or here

System
under test

Test
data
inputs

Test case OS CPU Protocol

1 Windows Intel IPv4

2 Windows AMD IPv6

3 Linux Intel IPv6

4 Linux AMD IPv4

Configuration

Testing Configurations
• Example: app must run on any configuration of OS, browser,
 protocol, CPU, and DBMS

• Very effective for interoperability testing

Configurations to Test
Degree of interaction coverage: 2
Number of parameters: 5
Maximum number of values per parameter: 3
Number of configurations: 10

Configuration #1:
1 = OS=XP
2 = Browser=IE
3 = Protocol=IPv4
4 = CPU=Intel
5 = DBMS=MySQL

Configuration #2:
1 = OS=XP
2 = Browser=Firefox
3 = Protocol=IPv6
4 = CPU=AMD
5 = DBMS=Sybase

Configuration #3:
1 = OS=XP
2 = Browser=IE
3 = Protocol=IPv6
4 = CPU=Intel
5 = DBMS=Oracle
. . . etc.

t # Configs % of Exhaustive

2 10 14

3 18 25

4 36 50

5 72 100

Testing Smartphone Configurations

int HARDKEYBOARDHIDDEN_NO;
int HARDKEYBOARDHIDDEN_UNDEFINED;
int HARDKEYBOARDHIDDEN_YES;
int KEYBOARDHIDDEN_NO;
int KEYBOARDHIDDEN_UNDEFINED;
int KEYBOARDHIDDEN_YES;
int KEYBOARD_12KEY;
int KEYBOARD_NOKEYS;
int KEYBOARD_QWERTY;
int KEYBOARD_UNDEFINED;
int NAVIGATIONHIDDEN_NO;
int NAVIGATIONHIDDEN_UNDEFINED;
int NAVIGATIONHIDDEN_YES;
int NAVIGATION_DPAD;
int NAVIGATION_NONAV;
int NAVIGATION_TRACKBALL;
int NAVIGATION_UNDEFINED;
int NAVIGATION_WHEEL;

int ORIENTATION_LANDSCAPE;
int ORIENTATION_PORTRAIT;
int ORIENTATION_SQUARE;
int ORIENTATION_UNDEFINED;
int SCREENLAYOUT_LONG_MASK;
int SCREENLAYOUT_LONG_NO;
int SCREENLAYOUT_LONG_UNDEFINED;
int SCREENLAYOUT_LONG_YES;
int SCREENLAYOUT_SIZE_LARGE;
int SCREENLAYOUT_SIZE_MASK;
int SCREENLAYOUT_SIZE_NORMAL;
int SCREENLAYOUT_SIZE_SMALL;
int SCREENLAYOUT_SIZE_UNDEFINED;
int TOUCHSCREEN_FINGER;
int TOUCHSCREEN_NOTOUCH;
int TOUCHSCREEN_STYLUS;
int TOUCHSCREEN_UNDEFINED;

Android configuration
options:

Configuration option values
Parameter Name Values # Values

HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 3

KEYBOARDHIDDEN NO, UNDEFINED, YES 3

KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4

NAVIGATIONHIDDEN NO, UNDEFINED, YES 3

NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED,
WHEEL

5

ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4

SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4

SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5

TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Total possible configurations:

 3 x 3 x 4 x 3 x 5 x 4 x 4 x 5 x 4 = 172,800

Number of configurations
generated

t # Configs % of Exhaustive

2 29 0.02

3 137 0.08

4 625 0.4

5 2532 1.5

6 9168 5.3

• Smaller test sets faster, with a more advanced user interface
• First parallelized covering array algorithm
• More information per test

12600 1070048 >1 day NA 470 11625 >1 day NA 65.03 10941 6

1549 313056 >1 day NA 43.54 4580 >1
day NA 18s 4226 5

127 64696 >21 hour 1476 3.54 1536 5400 1484 3.05 1363 4

3.07 9158 >12 hour 472 0.71 413 1020 2388 0.36 400 3

2.75 101 >1 hour 108 0.001 108 0.73 120 0.8 100 2

Time Size Time Size Time Size Time Size Time Size

TVG (Open Source) TConfig (U. of Ottawa) Jenny (Open Source) ITCH (IBM) IPOG
T-Way

New algorithms

Traffic Collision Avoidance System (TCAS): 273241102

Times in seconds
That's fast!

Unlike diet plans,
results ARE typical!

ACTS Tool

Defining a new system

Variable interaction strength

Constraints

Covering array output

Output
 Variety of output formats:

 XML
 Numeric
 CSV
 Excel

 Separate tool to generate .NET configuration
 files from ACTS output

 Post-process output using Perl scripts, etc.

Output options
Mappable values

Degree of interaction
coverage: 2
Number of parameters: 12
Number of tests: 100

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 1 1 1
2 0 1 0 1 0 2 0 2 2 1 0
0 1 0 1 0 1 3 0 3 1 0 1
1 1 0 0 0 1 0 0 4 2 1 0
2 1 0 1 1 0 1 0 5 0 0 1
0 1 1 1 0 1 2 0 6 0 0 0
1 0 1 0 1 0 3 0 7 0 1 1
2 0 1 1 0 1 0 0 8 1 0 0
0 0 0 0 1 0 1 0 9 2 1 1
1 1 0 0 1 0 2 1 0 1 0 1
Etc.

Human readable

Degree of interaction coverage: 2
Number of parameters: 12
Maximum number of values per
parameter: 10
Number of configurations: 100

Configuration #1:

1 = Cur_Vertical_Sep=299
2 = High_Confidence=true
3 = Two_of_Three_Reports=true
4 = Own_Tracked_Alt=1
5 = Other_Tracked_Alt=1
6 = Own_Tracked_Alt_Rate=600
7 = Alt_Layer_Value=0
8 = Up_Separation=0
9 = Down_Separation=0
10 = Other_RAC=NO_INTENT
11 = Other_Capability=TCAS_CA
12 = Climb_Inhibit=true

Using ACTS

• Number of tests: proportional to vt log n

for v values, n variables, t-way interactions
• Thus:

•Tests increase exponentially with interaction strength t : BAD,
but unavoidable
•But only logarithmically with the number of parameters :
GOOD!

• Example: suppose we want all 4-way combinations of n
parameters, 5 values each:

Cost and Volume of Tests

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

10 20 30 40 50

Variables

Tests

Example 1: Traffic
Collision Avoidance

System (TCAS) module

• Used in previous testing research
• 41 versions seeded with errors
• 12 variables: 7 boolean, two 3-value, one 4-

value, two 10-value
• All flaws found with 5-way coverage
• Thousands of tests - generated by model

checker in a few minutes

Tests generated
 t
2-way:
3-way:
4-way:
5-way:
6-way:

0

2000

4000

6000

8000

10000

12000

2-way 3-way 4-way 5-way 6-way

T
e

s
ts

Test cases
156
461

1,450
4,309

11,094

Results

Detection Rate for TCAS Seeded
Errors

0%

20%

40%

60%

80%

100%

2 way 3 way 4 way 5 way 6 way

Fault Interaction level

Detection
rate

• Roughly consistent with data on large systems

• But errors harder to detect than real-world examples

Tests per error

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2 w ay 3 w ay 4 w ay 5 w ay 6 w ay

Fault Interaction level
T

es
ts Tests per error

Bottom line for model checking based combinatorial testing:
Expensive but can be highly effective

EXAMPLE 2: Document Object Model Events
• DOM is a World Wide Web Consortium standard

incorporated into web browsers

• NIST Systems and Software division develops tests for
standards such as DOM

• DOM testing problem:
• large number of events handled by separate

functions
• functions have 3 to 15 parameters
• parameters have many, often continuous, values
• verification requires human interaction (viewing

screen)
• testing takes a long time

DOM FUNCTIONS

Event Name Param.

Tests
Abort 3 12
Blur 5 24
Click 15 4352
Change 3 12
dblClick 15 4352
DOMActivate 5 24
DOMAttrModified 8 16
DOMCharacterDataMo
dified

8 64

DOMElementNameCha
nged

6 8

DOMFocusIn 5 24
DOMFocusOut 5 24
DOMNodeInserted 8 128
DOMNodeInsertedIntoD
ocument

8 128

DOMNodeRemoved 8 128
DOMNodeRemovedFrom
Document

 8 128

DOMSubTreeModified 8 64
Error 3 12
Focus 5 24
KeyDown 1 17
KeyUp 1 17

Load 3 24
MouseDown 15 4352
MouseMove 15 4352
MouseOut 15 4352
MouseOver 15 4352
MouseUp 15 4352
MouseWheel 14 1024
Reset 3 12
Resize 5 48
Scroll 5 48
Select 3 12
Submit 3 12
TextInput 5 8
Unload 3 24
Wheel 15 4096
Total Tests 36626

Exhaustive testing of
equivalence class values

World Wide Web Consortium
Document Object Model Events

t Tests % of
Orig.

Test Results

Pass Fail Not
Run

2 702 1.92% 202 27 473
3 1342 3.67% 786 27 529
4 1818 4.96% 437 72 1309
5 2742 7.49% 908 72 1762

6 4227 11.54
% 1803 72 2352

All failures found using < 5% of
original exhaustive discretized test set

SUMMARY
• Combinatorial testing is now a practical approach that

produces high quality testing at lower cost

• Good algorithms and user-friendly tools are available –
no cost tools from NIST, Microsoft, others

• Basic combinatorial testing can be used in two ways:
• combinations of configuration values
• combinations of input values
• these can be used separately or at the same time

• Case studies are beginning to appear

• All tools and materials available at NIST web site

csrc.nist.gov/acts

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Using ACTS
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

