KINDI

Key EncapsulatloN and Encryption
baseD on Lattlces

Rachid El Bansarkhani

4 TECHNISCHE i

UNIVERSITAT QuantiCor

DARMSTADT \/

KINDI - Introduction

IDEA: Use trapdoor-based construction and inject data into the error term

[EDB15,EI17]

Trapdoor construction: Allows to retrieve secret s and error e from (Module- or

Ring-)LWE instances:

c=A-s+e

Error Term e contains all encrypted data m
Secret s contains a key
Security based on pseudorandomness of ¢

ﬁata

___,simplified” KEM and Encryption
scheme simultaneously

—

KINDI

CPA-secure Encryption Scheme

KINDI - Encryption

KINDIcpa.KeyGen(1™, p, k, t, () :

v, i {0, 1} | RgFZX)/<x"+1>
A € R +— Shake(p)

/ l ~
r,r’ € R, < Shake,(7) Drop t least

1

2

3

‘51 E ?on:pj;:s(b) // significant bits
6 pk:= (b,), sk := (r,b,u)

7 return (pk, sk)

secret
key

Public
key A r /

— 4
b b r
. compress . .
3 = e

KINDI - Encryption

KINDIcpa.Encrypt(pk, msg = {0, 1}*(c+D1082p; coins =1 or s; € Ry) :

1 851« Ro - —
P AcShake() Shiftt bits:
3 p = Decompress(b, t) — Multiply with 2
4 Pp= (f)l +gaI—)2a"'aI_)€)/ g_z
5 1,81, (So,...,8¢) € {0, 1}(HDI0e2r 5 R 5 RET < G(s1) := Shake(s;)
6 s=(s1+2-8 —[pl,sa—1[pl,....se—[p])"
7 U= UD msg
8 u = Encode(u) Centralization to
9 e= (ul - [.p]’ MR ué - [[)])T, € = Ug'+1 - [T)] / {'p,--..,p‘l}
0 (c,e)) =(A"-s+ep-s+g-[p+e) R
data
» 2 #
cT AT s i C P s e
_— . 4 =. .‘ +
.

% data

KINDI - Encryption

Algorithm 6: KINDIcpa.Decrypt(sk, (c,c)) :

A < Shake(u)
p = Decompress(b, t)

p=(P1+8 P2 Pr) Divide by 2+1
v=c—c-r' // and round
s1 = Recover(v) € R
U, 81, (S2,...,8¢) € {0, 1}"EHDI82 5 R RE! < Shake(s)
s=(51+2-5 —[p|,sa—[p],....se—[p])T
(e,e)=(u;—[p],...,upy1 —[p]) = (c— AT -s,c—p-s) mod g
msg = Decode(u) & u

© ® N O ok W N =

Decryption retrieves secret and the error term back.
Use message msg or s, as a key or both simultaneously.

KINDI

CCA-secure KEM

KIND] - CCA2-secure KEM

KIN DICCA—KEM .Encaps(pk) .

L sy {0,1}7
2 d < H(Sl) Few steps more
3 (c,c)’ < KINDIcpa.Encrypt(pk, d; s;) than encryption

s K < H(sy, (c,c)) /

In the random oracle model: d=0.
Essentially: (¢,c)=Encrypt(pk, 0), K=H'(s,, (c, c))

In the quantum random oracle model: d=H(s,)
Essentially: (¢,c)=Encrypt(pk, d=H(s,)), K=H'(s,, (c, ¢))

Note: d can be encrypted, too

KIND] - CCA2-secure KEM

KINDICCA_KEM.Decaps(sk, (C_, ()) :
(d', s}) < KINDIcpa.Decrypt(sk, (c, c))
if d =d :=H(s))
return H'(s/, (c,¢))
else
return H'(s, (c,¢))

ok W N =

= Due to trapdoor design ciphertext computation/check not required

» RO: Few steps more than Decryption:
Check d=0 & compute K=H'(s,, (c, ¢))

= gRO: Few steps more than Decryption:
Check d=H(s,) & compute K=H'(s;,, (c, ¢))

KINDI - Design Features

Trapdoor construction - recovery of secret and error vectors for
Inspection:

= Message recovery
= Have errors and secrets correct format?
= Has ciphertext been altered?

Security: Constructions based on module-LWE [LS15] in the
(quantum-)RO

= For module rank equal to 1: ring-LWE

» Fine grained usage of dimensions for better security-efficiency
tradeoffs

= Higher protection against dense sub-lattice attacks [KF17] etc.

KINDI - Design Features

Simplicity of design for encryption and KEM
KINDI-Encryption scheme always by design encrypts a message
and key simultaneously

KINDI-Encryption

O\

s, contains Error e contains
a KEM-key data

Thus, few steps needed to obtain CCA2-secure KEMs [HHK17]

KINDI - Design Features

» Huge amount of data can be encrypted at small ciphertext sizes

= (I+1):n-log 2p bits of data or log 2p bits per coefficient

» Low message expasion log 2p/log q, e.g. 4 or lower possible
» |ncreasing parameters |, n, p mmmm) more data and security

= Allows to encrypt bundles of session keys, signatures, etc.

= Suitable for sign-then-encrypt scenarios

Change of ciphertexts -
invalidates signature Message msg

\ contained in e,
A

L Signature on the message
e,=sign(msg)

KINDI - Design Features

KINDI encryption scheme can easily be turned to be CCA2-
secure beside the proposed KEM variant:

= Slightly larger parameters
» Essentially check size of coefficients
= Add F(s,,e) to the ciphertext with F=RO

Authenticated key exchange is obtained via generic
transformations

Trapdoor constructions are used in many advanced primitives
ranging from group signatures to attribute-based encryption

KINDI - Design Features

Possible Modifications: Ciphertext can also be compressed in
case the complete bandwidth is not used

e, contains
compress i message
Cc c = A e s+
e, does not
contain message

Secret and public keys can be generated from small seeds, if
sizes are critical

KINDI - Technical Features

Highly efficient implementation even at a high security level, also
suitable for loT

Use of power-of-two modulo and domain size, e.g. for error distrib.:

= No rejection sampling and no waste of random bits
= No expensive modulo operations, one use of ,AND*

Polynomial multiplication: FFT multiplication in cyclotomic ring x"+1
for small n=2k such as n=256, 512. Reusage of the FFT subroutine
for any change of parameters |, p, q. Extendable to NTT case.

Usage of FIPS 202 standardized Shake for random bit generation
and random oracle instantiations

KINDI - Technical Features

Constant time implementation:
Computations independent from secret elements

Additional implementation: Improved running times
via parallelization, e.g.

= AVX parallelization of the FFT
» Vectorized Keccak: faster generation of random bits

and key derivation

KIN DI - Results

Scheme

Timings

(Spec. AVXImpl.)

Timings

(Spec. Ref. Impl.) (conservative)

Encryption
KINDI-256-3

KEM
KINDI-256-3

Encryption
KINDI-512-2

KEM
KINDI-512-2

PK 1184
SK 1472
CT 1792

PK 1184
SK 1472
CT 1792

PK 1456
SK 1712
CT 2496

PK 1456
SK 1712
CT 2496

Keygen 104308
Encrypt 122648
Decrypt 151723

Encaps 133888
Decaps 162070

Keygen 113082
Encrypt 142950
Decrypt 187097

Encaps 160150
Decaps 202458

Keygen 203096
Encrypt 247793
Decrypt 312211

Encaps 260137
Decaps 323947

Keygen 214064
Encrypt 280420
Decrypt 377962

Encaps 306043
Decaps 397147

Bit Security NIST Category
>160 3
>160 3
>220 5
>220 5

KINDI - Design Features

Current implementation and documentation at: http://kindi-kem.de/
[HHK17] Dennis Hofheinz, Kathrin Hovelmanns, and Eike Kiltz. A
Modular Analysis of the Fujisaki-Okamoto Transformation. IACR
Cryptology ePrint Archive, 2017:604. 2017.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to Average-
case Reductions for Module Lattices. Designs, Codes and
Cryptography. 2015

[EDB15] Rachid El Bansarkhani, Ozgur Dagdelen, and Johannes A.
Buchmann. Augmented Learning with Errors: The Untapped
Potential of the Error Term. Financial Cryptography and Data
Security. 2015.

[EI17] EI Bansarkhani Rachid. Lara - A Design Concept for Lattice-
based Encryption. Cryptology ePrint Archive, Report 2017/049.
2017.

KINDI - Design Features

= [KF17] Paul Kirchner and Pierre-Alain Fouque. Revisiting Lattice
Attacks on overstretched NTRU Parameters. EUROCRYPT.
2017

