
KCL
(Key Consensus from Lattice)

Yunlei Zhao
Fudan University, Shanghai, China

(on behalf of the KCL team)

April 11, 2018

Brief Summary

A General Framework

• A modular, systematic and versatile approach to key
establishment, PKE, identity-concealed AKE based on LWE
and its variants.
• Applicable to almost all the variants of LWE with different

mathematical structures.
• We focus on implementations on LWE, LWR, RLWE and

MLWE.
• A unified framework for understanding and evaluating various

KEM/PKE proposals from LWE and its variants.

Key Building Tool: Formulation, Upper-bounds, and
Optimal Design

• Explicit formulation of key consensus (KC) and asymmetric
key consensus (AKC), which are at the heart of KE and PKE
from LWE and its variants.

• Briefly speaking, KC corresponds to Diffie-Hellman, while AKC
corresponds to ElGamal.

• Reveal inherent constraints on bandwidth, correctness and
consensus range, for any KC and AKC.

• Design of optimal KC and AKC: OKCN and AKCN, guided by
the proved inherent constraints on any KC/AKC.

KE/PKE From LWE and MLWE

• State-of-the-art of LWE-based key exchange (KE) and
CPA-secure PKE.
• The underlying KC mechanism of Frodo is not optimal, while

our OKCN is.
• The underlying AKC mechanism of FrodoKEM is a restricted

(less versatile) version of our AKCN.

• State-of-the-art of MLWE-based KE and CPA-PKE.

• The MLWE-based CPA-PKE from AKCN is essentially the
same as Kyber.

• Kyber focus on AKC-based implementations, while ours is for
both AKCN and OKCN.

KE/PKE From LWR

• The first KE and CPA-PKE merely based on LWR, with a
delicate analysis of error probability.
• State-of-the-art KC-based KE from LWR.
• Unified structure allowing for instantiations from both KC and

AKC, with the technique of randomness lifting.
• Related proposals: the subsequent works of Saber and

Round-2 show that for LWR-based KE from AKC, randomness
lifting is not necessary. But the structure of Saber and
Round-2 does not apply to KC-based KE.

KE/PKE From RLWE (I)

• When applied to RLWE-based cryptosystems, we make a key
observation by proving that the errors in different positions in
the shared-key are essentially independent.
• It is just heuristically claimed in existing works, without any

arguments or justifications.

• AKCN4:1, apply AKCN with lattice-code in D4 of NewHope

• It is the first AKC-based variant of NewHope: publicly
available earlier than NewHope-Simple (the proposal to NIST).

• Almost as simple as NewHope-Simple, but relatively more
efficient in bandwidth.

• We want to do better: new error-correction mechanisms.

KE/PKE From RLWE (II)

• single-error correction: we propose an extremely simple and
fast code, referred to as single-error correction (SEC) code, to
correct at least one bit error.

• By equipping OKCN/AKCN with the SEC code, we achieve
the simplest RLWE-based key exchange (up to now) with
negligible error rate for much longer shared-key size.

• To further improve the bandwidth, error rate and
post-quantum security simultaneously, we develop new lattice
code in E8.

• Packing in E8 is optimal.
• Packing in D4 as in NewHope is not optimal.
• Packing in Leech lattice is also optimal in 24 dimensions, but

is more complicated.

CCA-PKE Transformation

• All the OKCN-based KE and AKCN-based CPA-PKE can be
transformed into CCA-secure using the FO-transformation.
We use a variant of [BDKLLSSS17].

• Being different from the variant of FO-transformation
proposed in [BDKLLSSS17], in our CCA-PKE construction
one part derived from PK and randomness seed is not sent in
plain but encrypted with AEAD.

• It is more conservative and prudent for security in practice.
• Well compatible with identity-concealed AKE.

Concealed Non-malleable Key Establishment
(CNKE)

CNKE does not use signatures, and is carefully designed to enjoy
the following advantages simultaneously:

• Computational efficiency: replacing CCA-secure KEM in
existing constructions with an ephemeral KE protocol.

• Robust resistance to MIM malleating attacks, to secrecy
exposure, and to side-channel attacks.

• Privacy protection: identity information, as well as the
components of the underlying ephemeral KE, is encrypted.
• The only AKE of this feature in proposals to NIST.
• Identity privacy is mandated by some prominent standards like

TLS1.3, EMV, etc.

• Well compatibility with TLS1.3: uses AE (mandated by
TLS1.3), and uses the Finish mechanism of TLS1.3.

Definitions, Properties, and Constructions
of OKCN and AKCN

Alice
σ1 ∈ Zq

(k1, v)← Con(σ1, params)

Bob
σ2 ∈ Zq

k2 ← Rec(σ2, v, params)

v

≈

Figure: Depiction of KC

Completeness: k1 = k2, whenever |σ1 − σ2|q < d .

Security: k1 is independent of v , and is distributed uniformly
at random over Zm, whenever σ1 ← Zq.

Constraint: 2md ≤ q
(

1− 1
g

)
.

Alice
σ1

k1 ∈ Zm

v ← Con(σ1, k1, params)

Bob
σ2

k2 ← Rec(σ2, v, params)

v

≈

Figure: Depiction of Asymmetric KC (AKC)

Completeness: k1 = k2, whenever |σ1 − σ2|q < d .

Security: k1 is independent of v , whenever σ1 ← Zq.

Constraint: 2md ≤ q
(

1− m
g

)
.

Algorithm 1 OKCN

1: params = (q,m, g , d , aux), aux = {q′ = lcm(q,m), α =
q′/q, β = q′/m}

2: procedure Con((σ1, params)) . σ1 ∈ [0, q − 1]
3: e ← [−b(α− 1)/2c, bα/2c]
4: σA = (ασ1 + e) mod q′

5: k1 = bσA/βc ∈ Zm

6: v ′ = σA mod β
7: v = bv ′g/βc . v ∈ Zg

return (k1, v)
8: end procedure
9: procedure Rec(σ2, v , params) . σ2 ∈ [0, q − 1]

10: k2 = bασ2/β − (v + 1/2)/ge mod m
return k2

11: end procedure

Algorithm 2 OKCN simple

1: params : q = 2q̄, g = 2ḡ ,m = 2m̄, d , where ḡ + m̄ = q̄
2: procedure Con(σ1, params)

3: k1 =
⌊
σ1
g

⌋

4: v = σ1 mod g
return (k1, v)

5: end procedure
6: procedure Rec(σ2, v , params)

7: k2 =
⌊
σ2−v
g

⌉
mod m

return k2

8: end procedure

Algorithm 3 AKCN

1: params = (q,m, g , d , aux), where aux = ∅.
2: procedure Con((σ1, k1, params)) . σ1 ∈ [0, q − 1]
3: v = bg (σ1 + bk1q/me) /qe mod g

return v
4: end procedure
5: procedure Rec((σ2, v , params)) . σ2 ∈ [0, q − 1]
6: k2 = bm(v/g − σ2/q)e mod m

return k2

7: end procedure

Algorithm 4 AKCN power 2

1: params : q = g = 2q̄,m = 2m̄, aux = {G = q/m}
2: procedure Con(σ1, k1, params)
3: v = (σ1 + k1 · G) mod q, where k1 · G can be offline com-

puted
return v

4: end procedure
5: procedure Rec(σ2, v , params)
6: k2 = b(v − σ2)/Ge mod m

return k2

7: end procedure

A Note on KC/AKC

• KC and AKC were there in pioneering works, but were not
formally formulated, nor the upper-bounds on various
parameters were studied.

• Inherent upper-bounds: allow us to understand what can or
cannot be achieved with any KC/AKC, and guide our actual
protocol design.
• These upper-bounds also guide parameter choosing for various

trade-offs, and are insightful in comparing the performance of
KC vs. AKC.

• Optimality and Flexibility of OKCN and AKCN.

• Much simplify future design and analysis of cryptosystems
from LWE and its variants.

LWR-Based Key Exchange from OKCN/AKCN

Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Zn×n
q

X1 ← χn×lA

Y1 = ⌊AX1⌉p

Responder

A = Gen(seed)
X2 ← χn×lB

Y2 = ⌊ATX2⌉p
ϵ← [−q/2p, q/2p− 1]n×lA

Σ2 = YT
1 X2 + ⌊ϵTX2⌉p

(K2,V)← Con(Σ2, params)

Σ1 = XT
1 Y2

K1 ← Rec(Σ1,V, params)

seed,Y1 ∈ Zn×lA
p

Y2 ∈ Zn×lB
p ,V ∈ ZlA×lB

g

Figure: LWR-based KE from KC/AKC

Brief Comparison with Saber and Round-2

• To our knowledge, this is the first KE-protocol merely based
on LWR, with a delicate analysis of error rate.

• Publicly available from arXiv since Feb 16 2017.
• Unified protocol structure, with randomness lifting, which

supports implementations based on both KC and AKC.
• For recommended parameters, randomness lifting corresponds

to ε← [−2k , 2k)n×lA , which is highly efficient.

• The subsequent works of Saber and Round-2 show that for
LWR-based KE from AKC, randomness lifting is not necessary.
But the structure of Saber and Round-2 does not apply to
KC-based KE.

LWE-Based Key Exchange From OKCN/AKCN

Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Zn×nq

X1,E1 ← χn×lA

Y1 = b(AX1 + E1)/2
t1e

Responder

K2 ← ZlA×lBm

A = Gen(seed)
X2,E2 ← χn×lB

Y2 = b(ATX2 + E2)/2
t2e

Eσ ← χlA×lB

Σ2 = 2t1YT
1 X2 + Eσ

V← Con(Σ2,K2, params)

Σ1 = XT
1 (2

t2Y2)
K1 ← Rec(Σ1,V, params)

seed,Y1 ∈ Zn×lAdq/2t1e

Y2 ∈ Zn×lBdq/2t2e,V ∈ ZlA×lBg

Figure: LWE-based key exchange from AKC (recommended: t1 = 0 but
t2 6= 0

AKCN-LWE vs. FrodoKEM

FrodoKEM (the actual proposal to NIST) can be viewed as a
restricted (less versatile) version of AKCN-LWE:

• In AKCN-LWE, we recommend that t2 6= 0 for reducing
bandwidth, while t2 = 0 in FrodoKEM.

• In AKCN-LWE, q (the security parameter) and g (the
bandwidth parameter) are not necessarily are identical, and it
is recommended for g < q for bandwidth reduction, while
q = g in FrodoKEM.

Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Zn×nq

X1,E1 ← χn×lA

Y1 = AX1 + E1

Responder

A = Gen(seed)
X2,E2 ← χn×lB

Y2 = ATX2 + E2

Eσ ← χlA×lB

Σ2 = YT
1 X2 + Eσ

(K2,V)← Con(Σ2, params)

Σ1 = XT
1 (2

tY′2 + 2t−11)
K1 ← Rec(Σ1,V, params)

seed,Y1 ∈ Zn×lAq

Y′2 = bY2/2
tc ∈ Zn×lBdq/2te,V ∈ ZlA×lBg

Figure: LWE-based KE from KC

Algorithm 5 Key consensus scheme in Frodo

1: procedure Con(σ1, params) . σ1 ∈ [0, q)

2: v =
⌊

2−B̄+1σ1

⌋
mod 2

3: k1 =
⌊

2−B̄σ1

⌉
mod 2B return (k1, v)

4: end procedure
5: procedure Rec(σ2, v , params) . σ2 ∈ [0, q)

6: find x ∈ Zq closest to σ2 s.t.
⌊

2−B̄+1x
⌋

mod 2 = v

7: k2 =
⌊

2−B̄x
⌉

mod 2B return k2

8: end procedure

Constraint: 4md < q: not optimal.

Algorithm 6 OKCN simple

1: params : q = 2q̄, g = 2ḡ ,m = 2m̄, d , where ḡ + m̄ = q̄
2: procedure Con(σ1, params)

3: k1 =
⌊
σ1
g

⌋

4: v = σ1 mod g
return (k1, v)

5: end procedure
6: procedure Rec(σ2, v , params)

7: k2 =
⌊
σ2−v
g

⌉
mod m

return k2

8: end procedure

Constraint: 2md < q, optimal.

Discrete distributions and their Rényi divergences

dist. bits var.
probability of

order divergence
0 ±1 ±2 ±3 ±4 ±5

D1 8 1.10 94 62 17 2 15.0 1.0015832
D2 12 0.90 1646 992 216 17 75.0 1.0003146
D3 12 1.66 1238 929 393 94 12 1 30.0 1.0002034
D4 16 1.66 19794 14865 6292 1499 200 15 500.0 1.0000274

dist. bits var.
probability of

order divergence
0 ±1 ±2 ±3 ±4 ±5

D5 16 1.30 22218 15490 5242 858 67 2 500.0 1.0000337

dist. bits var.
probability of

order divergence
0 ±1 ±2 ±3 ±4 ±5 ±6

D̄1 8 1.25 88 61 20 3 25.0 1.0021674
D̄2 12 1.00 1570 990 248 24 1 40.0 1.0001925
D̄3 12 1.75 1206 919 406 104 15 1 100.0 1.0003011
D̄4 16 1.75 19304 14700 6490 1659 245 21 1 500.0 1.0000146

OKCN vs. Frodo

q n l m
g d

dist.
error rates

bw. (kB) |A| (kB) |K |
OKCN Frodo OKCN Frodo OKCN Frodo

Challenge 210 334 8 21 29 2 255 127 D1 2−47.9 2−14.9 6.75 139.45 64
Classical 211 554 8 22 29 2 255 127 D2 2−39.4 2−11.5 12.26 422.01 128

Recommended 214 718 8 24 210 2 511 255 D3 2−37.9 2−10.2 20.18 902.17 256
Paranoid 214 818 8 24 210 2 511 255 D4 2−32.6 2−8.6 22.98 1170.97 256

Paranoid-512 212 700 16 22 210 2 511 255 D̄4 2−33.6 2−8.3 33.92 735.00 512

q n l m
g d

dist.
error rates bw. (kB) |A| (kB) |K |

OKCN Frodo OKCN Frodo OKCN Frodo OKCN Frodo

Challenge 211 352 8 21 22 2 383 255 D̄1 2−80.1 2−41.8 7.76 7.75 170.37 64
Classical 212 592 8 22 22 2 383 255 D̄2 2−70.3 2−36.2 14.22 14.22 525.70 128

Recommended 215 752 8 24 23 2 895 511 D̄3 2−105.9 2−38.9 22.58 22.57 1060.32 256
Paranoid 215 864 8 24 23 2 895 511 D̄4 2−91.9 2−33.8 25.94 25.93 1399.68 256

q n l m g t d dist. err. bw. (kB) |A| (kB) |K |
Recommended 214 712 8 24 28 2 509 D5 2−39.0 18.58 887.15 256

Recommended-Enc 214 712 8 24 28 1 509 D5 2−52.3 19.29 887.15 256

OKCN-LWE/LWR vs. KC-Based Frodo

|K| bw.(kB) err. pq-sec

OKCN-LWR 265 16.19 2−30 130
OKCN-LWE 265 18.58 2−39 134

Frodo 256 22.57 2−38.9 130

Table: Comparison between OKCN-LWE/LWR and Frodo.

RLWE-Based Key Exchange from OKCN/AKCN

Initiator
seed← {0, 1}κ

a = Gen(seed) ∈ Rq
x1, e1 ← DZn,σ

y1 = b(a · x1 + e1)/2
t1e

Responder

a = Gen(seed)
x2, e2 ← DZn,σ

y2 = b(a · x2 + e2)/2
t2e

e′2 ← DZn,σ

σ2 = 2t1y1 · x2 + e′2 ∈ Rq
(k2,v)← Con(σ2, params)

σ1 = 2t2y2 · x1 ∈ Rq
k1 ← Rec(σ1,v, params)

seed,y1 ∈ Rq

y2 ∈ Rq,v ∈ Rg

Figure: RLWE-based KE from KC/AKC

Algorithm 7 NewHope Consensus Mechanism

1: procedure Decode(x ∈ R4/Z4) . Return a bit k such that
kg is closest to x + Z4

2: v = x− bxe return k = 0 if ‖v‖1 ≤ 1, and 1 otherwise
3: end procedure

4: HelpRec(x, b) = CVPD̃4

(
2r

q (x + bg)
)

mod 2r . b corresponds

to the dbl trick[P14]

5: rec
(
x ∈ Z4

q, v ∈ Z4
2r
)

= Decode
(

1
qx− 1

2r Bv
)

6: procedure Con(σ1 ∈ Z4
q, params)

7: b ← {0, 1}
8: v← HelpRec(σ1, b)
9: k1 ← rec(σ1, v)

return (k1, v)
10: end procedure
11: procedure Rec(σ2 ∈ Z4

q, v ∈ Z4
2r , params)

12: k2 ← rec(σ2, v)
13: end procedure

Combining AKCN with Lattice Code in D4

Algorithm 8 AKCN-4:1

1: procedure Con(σ1 ∈ Z4
q, k1 ∈ {0, 1}, params)

2: v = CVPD̃4
(g(σ1 + k1(q + 1)g)/q) mod (g , g , g , 2g)T

return v
3: end procedure
4: procedure Rec(σ2 ∈ Z4

q, v ∈ Z3
g × Z2g , params)

5: x = Bv/g − σ2/q
return k2 = 0 if ‖x− bxe‖1 < 1, 1 otherwise.

6: end procedure

• For simplicity, we focus on mathematical structure. By simple
programming trick, it can be implemented with only integer
arithmetic (without operating floating numbers).

AKC of NewHope: The Mathematical Structure

Algorithm 9 AKC Mechanism of NEWHOPE

1: procedure Con(σ1 ∈ Z4
q, k1 ∈ {0, 1}, params)

2: v = CVPZ4(g(σ1 + k1(q − 1)g)/q) mod (g , g , g , g)T

return v
3: end procedure
4: procedure Rec(σ2 ∈ Z4

q, v ∈ Z4
g , params)

5: x = bqv/ge − σ2 − (q − 1)g return k2 = 1 if ‖x‖1 < q, 0
otherwise.

6: end procedure

• Note: This is the equivalent mathematical structure of
NewHope-Simple (the actual proposal to NIST).

• In the actual proposal, some programming trick is used to
explicitly avoid floating number operations.

AKCN4:1 vs NewHope-Simple

• AKCN4:1 is the first AKC-based variant of NewHope.

• AKCN4:1 was publicly available from arXiv already since Nov
2016!, much earlier than NewHope-simple.

• When both AKCN4:1 and NewHope-Simple are presented in
their mathematical structures, it is obvious that they are close.

• The difference is that: we did a bit further to reduce
bandwidth expansion.

• With the natural implementation, the bandwidth expansion of
AKCN4:1 is 256 bits, while that of NewHope-Simple is 1024
bits.

• We want to do better...

• New error correction mechanisms, joint with OKCN/AKCN.

Single-Error Correction Code

Algorithm 10 EncodeC(x = (x1, . . . , xNH−1))

1: x0 = ⊕NH−1
i=1 xi

2: pT = HxT

3: c = (x0, x,p) c

Algorithm 11 DecodeC(x0, x = (x1, . . . , xNH−1),p)

1: p = ⊕NH−1
i=0 xi

2: if (p = 1)

3: i = HxT ⊕ p
4: xi = xi ⊕ 1 x

AKCN Equipped with SEC

Alice
σA ∈ ZNH+nH

q

kA = EncodeC(x)
v← Con(σA,kA, params)

Bob
σB ∈ ZNH+nH

q

kB ← Rec(σB ,v, params)
x′ = DecodeC(kB)

v

≈

Lattice Code in E8

• To further improve the bandwidth, error rate and
post-quantum security simultaneously, we develop new lattice
code in E8.

• Note that packing in E8 is optimal.

• Packing in D4 as in NewHope is not optimal.
• Packing in Leech lattice is also optimal in 24 dimensions, but

is more complicated.

• The construction and implementation is relatively
complicated. Please refer to the paper for details.

Algorithm 12 AKCN-E8

1: procedure Con(σ1 ∈ Z8
q, k1 ∈ Z4

2)

2: v =
⌊
g
q

(
σ1 + q−1

2 (k1H mod 2)
)⌉

mod g return v

3: end procedure
4: procedure Rec(σ2 ∈ Z8

q, v ∈ Z8
g)

5: k2 = DecodeE8

(⌊
q
g v
⌉
− σ2

)
return k2

6: end procedure

Algorithm 1 Decoding in E8 and C

1: procedure DecodeE8(x ∈ Z8
q)

2: for i = 0 . . . 7 do
3: costi,0 = |xi|2q
4: costi,1 = |xi + q−1

2 |2q
5: end for
6: (k00,TotalCost00)← Decode00C (costi∈0...7,b∈{0,1})
7: (k01,TotalCost01)← Decode01C (costi∈0...7,b∈{0,1})
8: if TotalCost00 < TotalCost01 then
9: b = 0

10: else
11: b = 1
12: end if
13: (k0, k1, k2, k3)← k0b

14: k2 = (k0, k1 ⊕ k0, k3, b)
15: return k2

16: end procedure
17: procedure Decodeb0b1C (costi∈0...7,b∈{0,1} ∈ Z8×2)
18: mind = +∞
19: mini = 0
20: TotalCost = 0
21: for j = 0 . . . 3 do
22: c0 ← cost2j,b0 + cost2j+1,b1

23: c1 ← cost2j,1−b0 + cost2j+1,1−b1
24: if c0 < c1 then
25: ki ← 0
26: else
27: ki ← 1
28: end if
29: TotalCost← TotalCost+ cki
30: if c1−ki − cki < mind then
31: mind ← c1−ki − cki
32: mini ← i
33: end if
34: end for
35: if k0 + k1 + k2 + k3 mod 2 = 1 then
36: kmini ← 1− kmini

37: TotalCost← TotalCost+mind

38: end if
39: k = (k0, k1, k2, k3)
40: return (k,TotalCost)
41: end procedure

2

OKCN/AKCN-RLWE vs. NewHope

|K| bw.(B) err. pq-sec

OKCN-RLWE-SEC-1 765 3136 2−68.4 250
OKCN-RLWE-SEC-2 765 3392 2−61 258

NewHope 256 3872 2−61 255

AKCN-RLWE-SEC-1 765 3264 2−68.4 250
AKCN-RLWE-SEC-2 765 3520 2−61 258

AKCN-RLWE-E8 512 3360 2−63.3 262
NewHope-Simple 256 4000 2−61 255

Table: Comparison between OKCN/AKCN-RLWE and NewHope. The
actual NewHope proposal uses some smaller parameters, but with
lowered security level.

On the desirability of OKCN/AKCN-SEC and
OKCN/AKCN-E8

• OKCN/AKCN-SEC schemes are the simplest RLWE-based KE
protocols with error probability that can be viewed negligible
in practice, which are better suitable for hardware or software
implementations.

• OKCN/AKCN-SEC and OKCN/AKCN-E8 are more versatile
and flexible, allowing various trade-offs among performances
and parameters.

• It is more desirable to have KE protocols that directly share or
transport keys of larger size.
• Shared key of size 256 bits can only provide 128 post-quantum

security in reality. In this sense, 255-bit ps-sec of NewHope is
overshot in reality.

• Note that for NewHope to achieve 512-bit shared key, it needs
a polynomial of 2048 degrees, which is significantly inefficient
and less flexible.

A Note on Ring Choices

In the proposal, for RLWE-based protocols we recommended the
popular power-of-two cyclotomic rings. In practice, we also suggest
to use the Safe-Prime rings Rq = Zq[X]/(X n + X n−1 + · · ·+ 1)
proposed by LIMA:

• Safe-Prime-1: Let m be a safe prime such that m = 2m′ + 1,
e denote the smallest integer satisfying 2e > 2m, q be a prime
such that q ≡ 1 (mod 2e ·m). Let n = ϕ(m) = 2m′,
Φm(X) = Xm−1 + Xm−2 + · · ·+ 1 = X n + X n−1 + · · ·+ 1.

• Safe-Prime-2: Let m be a safe prime such that m = n + 1.
Then ϕ(m) = n, and Φm(X) = X n + X n−1 + · · ·+ 1.

MLWE-Based Key Exchange from OKCN/AKCN

Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Rl×lq

X1,E1 ← Sl×1
η

Y1 = b(AX1 + E1)/2
t1e

Responder

A = Gen(seed)
X2,E2 ← Sl×1

η ,Eσ ← Sη
Y2 =

⌊
(ATX2 + E2)/2

t2
⌉

Σ2 = 2t1YT
1 X2 + Eσ

(K2,V)← Con(Σ2, params)

Σ1 = XT
1 (2

t2Y2)
K1 = Rec(Σ1,V, params)

seed,Y1

Y2,V

Figure: OKCN-MLWE: Just Kyber!

Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Rl×lq

X1,E1 ← Sl×1
η

Y1 = b(AX1 + E1)/2
t1e

Responder

K2 ← Znm
A = Gen(seed)

X2,E2 ← Sl×1
η ,Eσ ← Sη

Y2 =
⌊
(ATX2 + E2)/2

t2
⌉

Σ2 = 2t1YT
1 X2 + Eσ

V← Con(Σ2,K2, params)

Σ1 = XT
1 (2

t2Y2)
K1 = Rec(Σ1,V, params)

seed,Y1

Y2,V

Figure: AKCN-MLWE: Just Kyber! Kyber only focus on AKCN-based,
while ours is for both OKCN and AKCN

|K | n q η (η′) g t l pq-sec (t-sec) err pk (B) cipher (B) bw. (B)

OKCN-MLWE-KE-light 256 256 7681 5 (13) 23 4 2 102 (116) 2−36.2 608 704 1312
OKCN-MLWE-KE 256 256 7681 2 (10) 22 4 3 147 (183) 2−50.1 896 960 1856

OKCN-MLWE-PKE-light 256 256 7681 5 (9) 23 3 2 102 (111) 2−105.5 672 768 1440
OKCN-MLWE-PKE-1 256 256 7681 2 (10) 25 4 3 147 (183) 2−80.3 896 1056 1952
OKCN-MLWE-PKE-2 256 256 7681 2 (6) 22 3 3 147 (171) 2−166.4 992 1056 2048

AKCN-MLWE-PKE-light 256 256 7681 5 (9) 23 3 2 102 (111) 2−105.5 672 800 1472
AKCN-MLWE-PKE-1 256 256 7681 2 (10) 26 4 3 147 (183) 2−80.3 896 1088 1984
AKCN-MLWE-PKE-2 256 256 7681 2 (6) 23 3 3 147 (171) 2−166.4 992 1088 2080

OKCN-MLWE-Alt1 256 256 7681 4 22 2 3 161 2−142.7 1088 1152 2240
AKCN-MLWE-Alt1(Kyber) 256 256 7681 4 23 2 3 161 2−142.7 1088 1184 2272

OKCN-MLWE-Alt2 256 256 7681 4 22 3 3 161 2−71.9 992 1056 2048
OKCN-MLWE-Alt3 256 256 7681 4 24 3 3 161 2−109 992 1120 2112

Table: Parameters for OKCN/AKCN-MLWE.

KC vs AKC

Most KEM proposals to NIST (from LWE and its variants) only
provide AKC-based protocol, while our proposal focus on both
KC-based and AKC-based. Moreover, our OKCN-based protocols
have optimal performance.

• KC-based corresponds to Diffie-Hellman, while AKC-based to
El Gamal (there are some asymmetric unfair issues).

• KC-based is more versatile (for both KE and PKE), and is
more appropriate for incorporating into the existing DH-based
standards like TLS, IKE, EMV,...

• On the same parameters (q,m, g) (which implies the same
bandwidth), OKCN-based KE has lower error rate than
AKCN-based KE. Or, on the same parameters (q,m, d)
(which implies the same error rate), OKCN-based KE has
smaller bandwidth than AKCN-based
• This comparison is enabled by the proved upper-bounds on

these parameters.

Shortcoming of Our Proposal

• More than 40 protocols can be instantiated from our general
framework, but we were only able to implement a few of them.

• Some more implementations are available from
http://github.com/OKCN

• These implementations use codes from Frodo, NewHope, and
are not appropriate for submission to NIST.

• We aim for implementing more of them in the future.

http://github.com/OKCN

Conculusion

• Above all, with OKCN and AKCN, we provide a general
framework for achieving key exchange and public-key
encryption from lattice (specifically, LWE and its variants:
LWR, RLWE, MLWE), in a systemized and modular way.

• We provide a set of practical yet powerful tools for dealing
with noise: OKCN, AKCN, single-error correction code and
lattice code in E8,

• which we suggest may play a basic role in the future design and
analysis of cryptographic schemes from LWE and its variants.

• OKCN-based KE can be viewed as the equivalent of
Diffie-Hellman in the lattice world.

• OKCN-based KE is more versatile, and is more appropriate for
incorporating into the existing standards like IKE and TLS
that are based on the SIGMA mechanism.

• For KE of 256-bit shared-key, OKCN/AKCN-MLWE is the
most efficient. But for KE with shared-key of size 512 bits or
more (which is necessary for ensuring 256-bit post-quantum
security in reality), OKCN/AKCN-RLWE is the most efficient.

• Compared to RLWE and MLWE, the LWE and LWR problems
have fewer algebraic structures that can be exploited by
attacks. As noise sampling is relatively cumbersome for
lattice-based cryptography, LWR-based KE may be more
desirable in this sense.

References

• Zhengzhong Jin and Yunlei Zhao. Optimal Key Consensus in
Presence of Noise. https://arxiv.org/abs/1611.06150

• It was also introduced at Asia PQC Forum, Korean, in Nov
2016.

• Zhengzhong Jin and Yunlei Zhao. Optimal Key Consensus in
Presence of Noise. https://eprint.iacr.org/2017/1058

• Leixiao Cheng and Yunlei Zhao. A Comparative Study of
Lattice-Based KEM Proposals to NIST PQC Standardization.
To be posted at ePrint shortly.

https://arxiv.org/abs/1611.06150
https://eprint.iacr.org/2017/1058

Thanks!
• Questions and comments please kindly send to

ylzhao@fudan.edu.cn

