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Brief Summary



A General Framework

e A modular, systematic and versatile approach to key

establishment, PKE, identity-concealed AKE based on LWE
and its variants.

e Applicable to almost all the variants of LWE with different
mathematical structures.

e We focus on implementations on LWE, LWR, RLWE and
MLWE.

e A unified framework for understanding and evaluating various
KEM/PKE proposals from LWE and its variants.



Key Building Tool: Formulation, Upper-bounds, and
Optimal Design

e Explicit formulation of key consensus (KC) and asymmetric
key consensus (AKC), which are at the heart of KE and PKE
from LWE and its variants.

o Briefly speaking, KC corresponds to Diffie-Hellman, while AKC
corresponds to ElGamal.

e Reveal inherent constraints on bandwidth, correctness and
consensus range, for any KC and AKC.

e Design of optimal KC and AKC: OKCN and AKCN, guided by
the proved inherent constraints on any KC/AKC.



KE/PKE From LWE and MLWE

e State-of-the-art of LWE-based key exchange (KE) and
CPA-secure PKE.

e The underlying KC mechanism of Frodo is not optimal, while
our OKCN is.
e The underlying AKC mechanism of FrodoKEM is a restricted
(less versatile) version of our AKCN.
e State-of-the-art of MLWE-based KE and CPA-PKE.
e The MLWE-based CPA-PKE from AKCN is essentially the
same as Kyber.

e Kyber focus on AKC-based implementations, while ours is for
both AKCN and OKCN.



KE/PKE From LWR

e The first KE and CPA-PKE merely based on LWR, with a
delicate analysis of error probability.

o State-of-the-art KC-based KE from LWR.

e Unified structure allowing for instantiations from both KC and
AKC, with the technique of randomness lifting.

e Related proposals: the subsequent works of Saber and
Round-2 show that for LWR-based KE from AKC, randomness
lifting is not necessary. But the structure of Saber and
Round-2 does not apply to KC-based KE.



KE/PKE From RLWE (1)

e When applied to RLWE-based cryptosystems, we make a key
observation by proving that the errors in different positions in
the shared-key are essentially independent.

e |t is just heuristically claimed in existing works, without any
arguments or justifications.

o AKCN4:1, apply AKCN with lattice-code in D, of NewHope

o |t is the first AKC-based variant of NewHope: publicly
available earlier than NewHope-Simple (the proposal to NIST).

e Almost as simple as NewHope-Simple, but relatively more
efficient in bandwidth.

e \We want to do better: new error-correction mechanisms.



KE/PKE From RLWE (1)

e single-error correction: we propose an extremely simple and
fast code, referred to as single-error correction (SEC) code, to
correct at least one bit error.

e By equipping OKCN/AKCN with the SEC code, we achieve
the simplest RLWE-based key exchange (up to now) with
negligible error rate for much longer shared-key size.

e To further improve the bandwidth, error rate and
post-quantum security simultaneously, we develop new lattice
code in Eg.

e Packing in Eg is optimal.

e Packing in D, as in NewHope is not optimal.

e Packing in Leech lattice is also optimal in 24 dimensions, but
is more complicated.



CCA-PKE Transformation

e All the OKCN-based KE and AKCN-based CPA-PKE can be
transformed into CCA-secure using the FO-transformation.
We use a variant of [BDKLLSSS17].

e Being different from the variant of FO-transformation
proposed in [BDKLLSSS17], in our CCA-PKE construction
one part derived from PK and randomness seed is not sent in
plain but encrypted with AEAD.

e It is more conservative and prudent for security in practice.
e Well compatible with identity-concealed AKE.



Concealed Non-malleable Key Establishment
(CNKE)

CNKE does not use signatures, and is carefully designed to enjoy
the following advantages simultaneously:

e Computational efficiency: replacing CCA-secure KEM in
existing constructions with an ephemeral KE protocol.

e Robust resistance to MIM malleating attacks, to secrecy
exposure, and to side-channel attacks.

e Privacy protection: identity information, as well as the
components of the underlying ephemeral KE, is encrypted.

e The only AKE of this feature in proposals to NIST.
e |dentity privacy is mandated by some prominent standards like
TLS1.3, EMV, etc.

e Well compatibility with TLS1.3: uses AE (mandated by
TLS1.3), and uses the Finish mechanism of TLS1.3.



Definitions, Properties, and Constructions
of OKCN and AKCN



Alice Bob
o1 € Zq o9 € Zq

Q

(k1,v) < Con(oq, params)
v

_—

ko < Rec(o2, v, params)

Figure: Depiction of KC

Completeness: ki = kp, whenever |01 — 02|q < d.

Security: ky is independent of v, and is distributed uniformly
at random over Z,,, whenever o1 < Zj,.

Constraint: 2md < g (1 — é)



Alice Bob

o1 ~ (o)
k1 € Zp,
v < Con(oy, k1, params)
v
—_—

ko < Rec(o2, v, params)

Figure: Depiction of Asymmetric KC (AKC)

Completeness: ki = ky, whenever |01 — 02|q < d.

Security: kq is independent of v, whenever o < Zj.

Constraint: 2md < g (1 - ?)



Algorithm 1 OKCN

1. params = (g, m,g,d,aux), aux = {q" = lem(g,m),a =
q/q,8=4q/m}

2: procedure Con((o1, params)) > oy €[0,q— 1]

3 e« [~[(a—1)/2],[a/2]]

4: oa = (ao1 + e) mod ¢’

5: ki = loa/B] € Zm

6: v =04 mod f3

7: v=|vg/3] >V E Lg

return (kq,v)

8: end procedure
9: procedure Rec(o>, v, params) > og €[0,q — 1]
10: ko = |aoa/B — (v+1/2)/g] mod m

return ky

11: end procedure







Algorithm 2 OKCN simple

1: params: q=29,g =28 m=2" d, whereg + m =g
2: procedure Con(o1, params)
: —|a
3: ki = E
4 v =01 modg

return (ki, v)
end procedure
. procedure Rec(o», v, params)

N o

ko = L%W mod m
return ko
8: end procedure




Algorithm 3 AKCN

1. params = (g, m, g, d, aux), where aux = ().

2: procedure CON((o1, k1, params)) > oy €[0,9—1]
3 v=|g(o1+ [kig/m])/q] mod g
return v
4. end procedure
5: procedure REC((02, v, params)) >op € [0,qg — 1]
ko = |m(v/g —o2/q)] mod m
return ko

7: end procedure




Algorithm 4 AKCN power 2

1: params: g =g =29, m=2" aux = {G = q/m}
2: procedure CON(o1, ki, params)

v = (01 + ki - G) mod q, where ki - G can be offline com-

puted

return v
4: end procedure
5. procedure REC(05, v, params)
6: ko = L(V—Ug)/G—‘ mod m

return ko
7: end procedure




A Note on KC/AKC

KC and AKC were there in pioneering works, but were not
formally formulated, nor the upper-bounds on various
parameters were studied.

Inherent upper-bounds: allow us to understand what can or
cannot be achieved with any KC/AKC, and guide our actual
protocol design.

e These upper-bounds also guide parameter choosing for various
trade-offs, and are insightful in comparing the performance of
KC vs. AKC.

Optimality and Flexibility of OKCN and AKCN.

Much simplify future design and analysis of cryptosystems
from LWE and its variants.



LWR-Based Key Exchange from OKCN/AKCN



Initiator Responder
seed « {0, 1}~
A = Gen(seed) € Z;*"

X, Xn><lA
Y, = [AX4],
seed, Yy € Z1*!a
A = Gen(seed)
Xg — anlB
Y, = [ATX,],
€ [-q/2p,q/2p — 1]"*1
2, =YXy + [€7X,],
(K2, V) < Con(Xo, params)
nxlp Laxlp
Y, e ZPX , Ve Zg“
= =X7Y,

K; < Rec(X1, V, params)

Figure: LWR-based KE from KC/AKC



Brief Comparison with Saber and Round-2

e To our knowledge, this is the first KE-protocol merely based
on LWR, with a delicate analysis of error rate.
e Publicly available from arXiv since Feb 16 2017.

e Unified protocol structure, with randomness lifting, which
supports implementations based on both KC and AKC.

e For recommended parameters, randomness lifting corresponds
to € < [—2K,2%)"a which is highly efficient.

e The subsequent works of Saber and Round-2 show that for
LWR-based KE from AKC, randomness lifting is not necessary.
But the structure of Saber and Round-2 does not apply to
KC-based KE.



LWE-Based Key Exchange From OKCN/AKCN



Initiator Responder
seed « {0,1}"
A = Gen(seed) € Zy*"
Xy, By ¢ x"xla
Y; = [(AX; + Ep)/201]

!
seed, Y, € Z’qu/;}ﬂ

K2 “— Z,ln’;leB
A = Gen(seed)
Xy, Ey ¢ x™¥!5
Y, = [(ATX, + Ey)/2!2]
Eo — XlAXlB
2y =20YT X, + E,
V + Con(Xs3, Ka, params)

Y, € Zi i, V € Zipxts

3 = X{(2t2Y2)
K; < Rec(X;,V,params)

Figure: LWE-based key exchange from AKC (recommended: t; = 0 but
th#0



AKCN-LWE vs. FrodoKEM

FrodoKEM (the actual proposal to NIST) can be viewed as a
restricted (less versatile) version of AKCN-LWE:

e In AKCN-LWE, we recommend that t, # 0 for reducing
bandwidth, while t, = 0 in FrodoKEM.

e In AKCN-LWE, g (the security parameter) and g (the
bandwidth parameter) are not necessarily are identical, and it

is recommended for g < g for bandwidth reduction, while
qg = g in FrodoKEM.



Initiator Responder
seed < {0,1}"
A = Gen(seed) € Zy*"
)(17 E1 — XnXlA
Y, =AX + E;

seed, Y, € Z;Xl*‘

A = Gen(seed)
)(27 E; + anlB
Y, =ATX, + E,
:E{I — XZAXlB
S =YTX, + E,
(K3, V) + Con(X5, params)

nxl
Yh = [Yo/2!| € 2}V € Zipxie

3 = XT(2tY), + 2¢711)
K; < Rec(X1,V, params)

Figure: LWE-based KE from KC



Algorithm 5 Key consensus scheme in Frodo

1. procedure CON(oq, params) > o1 €[0,q)

2: v = P_Bﬂolj mod 2

3: ki = P_BUJ mod 28 return (kq, v)

4. end procedure

5: procedure REC(0p, v, params) > o2 € [0, q)
6:  find x € Z, closest to 07 s.t. {275+1XJ mod 2 = v

7: ko = LQ*EXW mod 28 return k>

8: end procedure

Constraint: 4md < g: not optimal.



Algorithm 6 OKCN simple

1: params: q=29,g =28 m=2" d, whereg +m =g
2: procedure Con(oy, params)
3: ky = L%J
4: v =01 modg
return (ki, v)
end procedure
. procedure Rec(o>, v, params)

N o

ko = L%W mod m
return ko
8: end procedure

Constraint: 2md < g, optimal.



Discrete distributions and their Rényi divergences

dist. | bits | var. 0 ilprobai);llty 013 14 45 order divergence
Dy 8] 1.10 94 62 17 2 15.0 1.0015832
Dy 12 | 0.90 | 1646 992 216 17 75.0 1.0003146
Ds 12 | 1.66 | 1238 929 393 94 12 1| 30.0 1.0002034
Dy 16 | 1.66 | 19794 14865 6292 1499 200 15 | 500.0 1.0000274
dist. | bits | var. 0 iqrobail;ty 013 4 s order divergence
Ds 16 | 1.30 | 22218 15490 5242 858 67 2| 500.0 1.0000337
dist. | bits | var. 0 11 prib;b|l|tigf L4 45 46 order divergence
Dy 8]1.25 88 61 20 3 25.0 1.0021674
D, 12 [ 1.00 | 1570 990 248 24 1 40.0 1.0001925
D3 12 | 1.75 1206 919 406 104 15 1 100.0 1.0003011
Dy 16 | 1.75 | 19304 14700 6490 1659 245 21 1]500.0 1.0000146




OKCN vs. Frodo

g d . error rates

9 7 | "I GREN Frodo | OKCN Frodo | % [OKCN  Frodo | P¥ (KB) | 1Al (kB) | K|

Challenge 210 334 g 2f 29 2 255 127 Dy | 27%79 27149 6.75 | 139.45 | 64
Classical 21 554 g 22 29 2 255 127 | D, | 27394 215 12.26 | 422.01 | 128
Recommended | 24 718 8 2% 210 2 511 255 | Dj | 27379 p-102 20.18 | 902.17 | 256
Paranoid 24 g18 g8 2¢ 210 2 511 255 | Dy | 27326 2786 22.98 | 1170.97 | 256
Paranoid-512 | 2! 700 16 2° 210 2 511 255 | Dy | 27336 2783 33.92 | 735.00 | 512

g d . error rates bw. (kB

9 n | ™M IGKCN Frodo | OKCN Frodo | % [OKCN Frodo | OKCN { FrZ)do Al (B) | IK]

Challenge 21T 352 g 2f 2 2 383 255 | D; | 27%0T o7 776 7.75| 17037 | 64
Classical 212 592 g 22 22 2 383 255 | D, | 27703 27362 1422 14.22 | 52570 | 128
Recommended | 2!° 752 8 2% 23 2 895 511 | D; [ 271059 27389 ) 2258 22,57 | 1060.32 | 256
Paranoid 215 864 8 2¢ 23 2 805 511 | Dy | 27909 27338 | 2504 2503 | 1399.68 | 256

q n | m g t d dist. err. bw. (kB) |A| (kB) K]

Recommended 214 712 8 2% 28 2 509 Ds 27390 1858 887.15 256
Recommended-Enc | 24 712 8 2* 28 1 509 D5 27°23  19.29 887.15 256




OKCN-LWE/LWR vs. KC-Based Frodo

K|  bw.(kB) err.  pg-sec
OKCN-LWR | 265  16.19 2—30 130

OKCN-LWE | 265 18.58 2-39 134
Frodo 256 2257 27389 130

Table: Comparison between OKCN-LWE/LWR and Frodo.




RLWE-Based Key Exchange from OKCN/AKCN



Initiator Responder
seed — {0, 1}"
a = Gen(seed) € R,
x1,e1 < Dzn 5

yi=[(a-x1 +ep)/2]
seed,y; € R,

a = Gen(seed)
X2,€2 < Dzn o
y2 = [(a-x2 +e2)/2%]
e/2 — Dznyg
o2 = 2t1y1 - Xo +e/2 € Rq
(k2,V) « Con(oo, params)

Y2 €E Ry, VER,

o1 :2t2y2 © X1 eRq
k; «+ Rec(o1, v, params)

Figure: RLWE-based KE from KC/AKC



Algorithm 7 NewHope Consensus Mechanism

1:

10:
11:
12:
13:

procedure DECODE(x € R*/Z*) > Return a bit k such that
kg is closest to x + Z*
v=x— [x]| return k =0 if |[v|];1 <1, and 1 otherwise

. end procedure

HelpRec(x, b) = CVPp, (%(x + bg)) mod 2" > b corresponds
to the dbl trick[P14]
rec ( € Z4 v E ZA',) = Decode < X — —Bv)
procedure CON(o; € Zj, params)
b+ {0,1}
v < HelpRec(o1, b)
ki < rec(o1,v)
return (kq,v)
end procedure
procedure REC(0; € Zj, v € Z3,, params)
ko < rec(oa,v)
end procedure




Combining AKCN with Lattice Code in D,

Algorithm 8 AKCN-4:1

[y

. procedure CON(o; € Zi, ki € {0,1}, params)
v =CVPgs (g(o1 + ki(q+1)g)/q) mod (g,8,2,28)"
return v
3: end procedure
4: procedure REC(0 € Z7, v € 3 X Zog, params)
5: x=Bv/g—02/q
return ky = 0 if ||x — |x][[1 < 1, 1 otherwise.
6: end procedure

N

e For simplicity, we focus on mathematical structure. By simple
programming trick, it can be implemented with only integer
arithmetic (without operating floating numbers).



AKC of NewHope: The Mathematical Structure

Algorithm 9 AKC Mechanism of NEWHOPE

[ay

: procedure CON(o; € Zg, ki € {0,1}, params)
v =CVPz(g(o1+ ki(qg — 1)g)/q) mod (g, g,8,8)"
return v
3: end procedure
4: procedure REC(0; € Zg, v € Zg, params)
x=|qv/g] —o2—(g—1)g return ky = 1if |[x|[; < g, 0
otherwise.
6: end procedure

N

e Note: This is the equivalent mathematical structure of
NewHope-Simple (the actual proposal to NIST).

e In the actual proposal, some programming trick is used to
explicitly avoid floating number operations.



AKCN4:1 vs NewHope-Simple

AKCN4:1 is the first AKC-based variant of NewHope.

o AKCN4:1 was publicly available from arXiv already since Nov
2016!, much earlier than NewHope-simple.

When both AKCN4:1 and NewHope-Simple are presented in
their mathematical structures, it is obvious that they are close.

The difference is that: we did a bit further to reduce
bandwidth expansion.

e With the natural implementation, the bandwidth expansion of
AKCN4:1 is 256 bits, while that of NewHope-Simple is 1024
bits.

We want to do better...

e New error correction mechanisms, joint with OKCN/AKCN.



Single-Error Correction Code

Algorithm 10 Encodec(x = (x1,...,xn,-1))

Algorithm 11 Decodec(xp,x = (x1,...,Xn,—1), P)

1 p:EBII-V:"’O_lx,'

2. if (p=1)

3: i:HxT@ﬁ
4: x; =x P 1x




AKCN Equipped with SEC

Alice Bob
O A EZ(IZVHJ'_”H op eZl]]VH-FnH

Q

k. = Encodec(x)
v < Con(o 4, k4, params)
v
kp <+ Rec(o g, v, params)
x’ = Decodec (kp)



Lattice Code in Eg

e To further improve the bandwidth, error rate and
post-quantum security simultaneously, we develop new lattice
code in Eg.

e Note that packing in Eg is optimal.

e Packing in D, as in NewHope is not optimal.
e Packing in Leech lattice is also optimal in 24 dimensions, but
is more complicated.

e The construction and implementation is relatively
complicated. Please refer to the paper for details.



Algorithm 12 AKCN-E8

1: procedure CON(0; € Zf,, ki € Z3)
2: v = L% (al + 9% (k;H mod 2)>—‘ mod g return v
3: end procedure

8

4: procedure Rec(o € Z5, v € Z2)
5: ko = Decodeg, (L?‘Zv] — 02) return k,
6: end procedure




Algorithm 1 Decoding in By and O

I: procedure Decoder, (x € Zy)
Tdo

2 fori
3: costig = |zif?

4 costiy = |z + L2

5 end for

G (K", TotalCost®) + Decodel® (costicq. 7sef01})
7 (K", TotalCost"") « Decode(! (costicq..7e(n 1))
& if TotalCost® < TotalCost’ then

o b=0

0. else

11 b=

120 endif

13 (koo ky, ko, ks) « k%
1® k. k. b)

15: return ky

16: end procedure

17: procedure Decodel?" (costico. 7 peq0.1) € Z%°)
18 ming=+oo

19 min,
2. TotalCost = 0

2. forj=0...3do

2 o 4 costap, + costaji1n
23 €1 4 costj 1y + COsta; 11—,

21 if g < 1 then

25 ki 0

2 else

27 ki1

28 end if

2 TotalCost ¢ TotalCost + ¢,

30 if ¢y, — ok, < ming then

31 ming ¢ ery, - ok,

32 ming i

33 end if

31: end for

5 if ko+ ki + ko + k3 mod 2 = 1 then
36 Emin, < 1= Fmin,

ar TotalCost +- TotalCost + ming

3 endif

3. = (ko, k. ko, ks,

40 return (k, TotalCost)

41: end procedure




OKCN/AKCN-RLWE vs. NewHope

K| bw.(B) err.  pg-sec
OKCN-RLWE-SEC-1 | 765 3136 2 %84 250
OKCN-RLWE-SEC-2 | 765 3392 2701 258
NewHope 256 3872 2701 255
AKCN-RLWE-SEC-1 | 765 3264 2084 250
AKCN-RLWE-SEC-2 | 765 3520 2701 258
AKCN-RLWE-E8 | 512 3360 27033 262
NewHope-Simple 256 4000 27 255

Table: Comparison between OKCN/AKCN-RLWE and NewHope. The
actual NewHope proposal uses some smaller parameters, but with
lowered security level.




On the desirability of OKCN/AKCN-SEC and
OKCN/AKCN-E8

e OKCN/AKCN-SEC schemes are the simplest RLWE-based KE
protocols with error probability that can be viewed negligible
in practice, which are better suitable for hardware or software
implementations.

e OKCN/AKCN-SEC and OKCN/AKCN-E8 are more versatile
and flexible, allowing various trade-offs among performances
and parameters.

e It is more desirable to have KE protocols that directly share or
transport keys of larger size.

e Shared key of size 256 bits can only provide 128 post-quantum
security in reality. In this sense, 255-bit ps-sec of NewHope is
overshot in reality.

e Note that for NewHope to achieve 512-bit shared key, it needs
a polynomial of 2048 degrees, which is significantly inefficient
and less flexible.



A Note on Ring Choices

In the proposal, for RLWE-based protocols we recommended the
popular power-of-two cyclotomic rings. In practice, we also suggest
to use the Safe-Prime rings Ry = Zg[X]|/(X" + X" 1 ... +1)
proposed by LIMA:

e Safe-Prime-1: Let m be a safe prime such that m = 2m’ + 1,
e denote the smallest integer satisfying 2¢ > 2m, g be a prime
such that g =1 (mod 2° - m). Let n = ¢(m) = 2m’,

Pp(X) =X XM 24 41 =X"4 X" 41

e Safe-Prime-2: Let m be a safe prime such that m = n+ 1.

Then o(m) = n, and ®,,(X) = X"+ X1 ...+ 1.



MLWE-Based Key Exchange from OKCN/AKCN



Initiator
seed < {0,1}"
A = Gen(seed) € R
Xl, E1 < Sffd
Y = [(AX; + Eq)/2%]
seed, Y

Responder

Y,V

A = Gen(seed)
X2,E2 — S%Xl,EU — S»,]
Y, = [(ATX, + E,)/2%]

3, =24YTX, +E,
(K2, V) « Con(X2, params)

2 = XT(22Y,)
K; = Rec(X4, V, params)

Figure: OKCN-MLWE

: Just Kyber!



Initiator
seed < {0,1}"
A = Gen(seed) € RLX!
)(17 E1 — S7IIX1
Y; = [(AX; + Eq)/211]

Responder

seed, Y,

K2 — ZZL
A = Gen(seed)
XQ,EQ — SéXI,EU — S"I
Y, = {(ATXQ + E2)/2t2-|
3y =24YTX, + E,
V + Con(X3, Ka, params)
Y.,V

2, = XT(22Y5)
K; = Rec(X;,V, params)

Figure: AKCN-MLWE: Just Kyber! Kyber only focus on AKCN-based,
while ours is for both OKCN and AKCN



|K n g n()) g t | pg-sec (t-sec) err pk (B) cipher (B) bw. (B)
OKCN-MLWE-KE-light 256 256 7681 b5 (13) 2° 4 2 102 (116) % 608 704 1312
OKCN-MLWE-KE 256 256 7681 2(10) 22 4 3  147(183) 2°°0! 896 960 1856
OKCN-MLWE-PKE-light 256 256 7681 5(9) 2° 3 2  102(111) 271%5 672 768 1440
OKCN-MLWE-PKE-1 256 256 7681 2(10) 2° 4 3  147(183) 27%03 896 1056 1952
OKCN-MLWE-PKE-2 256 256 7681 2(6) 2° 3 3 147 (171) 2704 992 1056 2048
AKCN-MLWE-PKE-light 256 256 7681 5(9) 2° 3 2 102 (111) 275 672 800 1472
AKCN-MLWE-PKE-1 256 256 7681 2(10) 2° 4 3  147(183) 27%3 896 1088 1984
AKCN-MLWE-PKE-2 256 256 7681 2(6) 2° 3 3 147 (171) 27194 992 1088 2080
OKCN-MLWE-ARtl 256 256 7681 4  2° 2 3 161 271727771088 1152 2240
AKCN-MLWE-AIt1(Kyber) 256 256 7681 4 23 2 3 161 271427 1088 1184 2272
OKCN-MLWE-AIt2 256 256 7681 4 22 3 3 161 27719 992 1056 2048
OKCN-MLWE-Alt3 256 256 7681 4 2° 3 3 161 27109 992 1120 2112
Table: Parameters for OKCN/AKCN-MLWE.



KC vs AKC

Most KEM proposals to NIST (from LWE and its variants) only
provide AKC-based protocol, while our proposal focus on both
KC-based and AKC-based. Moreover, our OKCN-based protocols
have optimal performance.

e KC-based corresponds to Diffie-Hellman, while AKC-based to
El Gamal (there are some asymmetric unfair issues).

e KC-based is more versatile (for both KE and PKE), and is
more appropriate for incorporating into the existing DH-based
standards like TLS, IKE, EMV, ...

e On the same parameters (g, m, g) (which implies the same
bandwidth), OKCN-based KE has lower error rate than
AKCN-based KE. Or, on the same parameters (g, m, d)
(which implies the same error rate), OKCN-based KE has
smaller bandwidth than AKCN-based

e This comparison is enabled by the proved upper-bounds on
these parameters.



Shortcoming of Our Proposal

e More than 40 protocols can be instantiated from our general
framework, but we were only able to implement a few of them.
e Some more implementations are available from
http://github.com/0KCN
e These implementations use codes from Frodo, NewHope, and
are not appropriate for submission to NIST.

e We aim for implementing more of them in the future.


http://github.com/OKCN

Conculusion



e Above all, with OKCN and AKCN, we provide a general
framework for achieving key exchange and public-key
encryption from lattice (specifically, LWE and its variants:
LWR, RLWE, MLWE), in a systemized and modular way.

e We provide a set of practical yet powerful tools for dealing
with noise: OKCN, AKCN, single-error correction code and
lattice code in Eg,

e which we suggest may play a basic role in the future design and
analysis of cryptographic schemes from LWE and its variants.



e OKCN-based KE can be viewed as the equivalent of
Diffie-Hellman in the lattice world.

e OKCN-based KE is more versatile, and is more appropriate for
incorporating into the existing standards like IKE and TLS
that are based on the SIGMA mechanism.



e For KE of 256-bit shared-key, OKCN/AKCN-MLWE is the
most efficient. But for KE with shared-key of size 512 bits or
more (which is necessary for ensuring 256-bit post-quantum
security in reality), OKCN/AKCN-RLWE is the most efficient.

e Compared to RLWE and MLWE, the LWE and LWR problems
have fewer algebraic structures that can be exploited by
attacks. As noise sampling is relatively cumbersome for
lattice-based cryptography, LWR-based KE may be more
desirable in this sense.
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