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Limitations:
The decryption failure probability does not decrease quickly.
Security is not based on a random quasi-cyclic/ideal code (but considered hard by the
community).
Decoding in the rank metric is a more recent problem (27 years old).

Advantages and Limitations 

Advantages: 
Very easy to understand (à la Niederreiter). 
Very small key size. 
Very fast keygen/encryption/decryption time. 
The decryption failure probability is well-understood and theoretically bounded. 
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Let β1, . . . , βm be a basis of Fqm/Fq. To each vector x ∈ Fn
qm we can associate a matrix Mx

x = (x1, . . . , xn) ∈ Fn
qm ↔Mx =

⎛⎜⎝x11 . . . x1n
...

. . .
...

xm1 . . . xmn

⎞⎟⎠ ∈ Fm×n
q

such that xj =
Pm

i=1 xijβi for each j ∈ [1..n].

Defnition
dR(x , y) = Rank(Mx −My ) and |x |R = RankMx .

Presentation of the rank metric 

Rank Metric 

We only consider codes with coeÿcients in Fqm . 
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Number of supports of weight w :

Rank Hamming�
m
w

�
q

≈ qw(m−w)

�
n
w

�
6 2n

Complexity in the worst case:
quadratically exponential for Rank Metric
simply exponential for Hamming Metric

Presentation of the rank metric 

Support of a Word 

Defnition 
The support of a word is the Fq-subspace generated by its coordinates: 

Supp(x) = hx1, . . . , xniFq 
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The decoding algorithm requires a parity-check matrix of weight d .

Presentation of the rank metric 

LRPC Codes 

Defnition 

Let H ∈ F(
q
n
m 
−k)×n a full-rank matrix such that the dimension d of hhij iFq is small. 

By defnition, H is a parity-check matrix of an [n, k]qm LRPC code. 
We say that d is the weight of the matrix H . 
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Presentation of the rank metric 

Notation 

From now, all vectors of Fn
qm can be viewed as elements of Fqm [X ]/(P) for some polynomial P . 

u 
X u mod P 

⎞⎛ ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
Let u ∈ Fn

qm , (u)M denotes the matrix . . . 
X n−1u mod P 
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P ∈ Fq[X ] =⇒ the weight of H is d .
Ideal LRPC in rank metric ' QC-MDPC in Hamming metric ' NTRU in Euclidean metric.

Presentation of the rank metric 

Ideal LRPC Codes 

Defnition 
Let F be a Fq-subspace of dimension d of Fqm , (h1, h2) two vectors of Fn

qm of support F and 
P ∈ Fq[X ] a polynomial of degree n.� � 
By defnition, the matrix H = (h1)M|(h2)M is a parity-check matrix of an [2n, n]qm ideal 
LRPC code C. 
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P irreducible =⇒ resistant against folding attacks [4].

Presentation of the rank metric 

I − LRPC Problem 

Problem (Ideal LRPC codes indistinguishability) 

Given h ∈ Fn
qm and P ∈ Fq[X ] of degree n, it is hard to distinguish if h was sampled uniformly 

at random or as x−1y mod P , where x and y have the same support of small dimension d . 

Since h defnes an ideal code, it is hard to distinguish between a random ideal code and an 
ideal LRPC code. 
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Probabilistic reduction to the NP-Complete ISD problem [3].

Presentation of the rank metric 

RSD Problem 

Problem (Rank Syndrome Decoding problem) 

, s ∈ Fn−k 

HeT = sT 

|e|R = r 

Given H ∈ F(
q
n
m 
−k)×n 

qm and an integer r , fnd e ∈ Fn
qm such that: 
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Presentation of the rank metric 

I − RSD problem 

Problem (Ideal Rank Syndrome Decoding problem) 

Given h ∈ Fn [X ] of degree n, s ∈ Fn−k and an integer r , fnd e = (e1|e2) ∈ F2n 
qm , P ∈ Fq qm qm 

such that: 
he1 + e2 = s mod P 

|e|R = r 
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Description of the schemes 

LAKE, a Key Encapsulation Mechanism 

Our schemes contain a hash function G modeled as a ROM and an irreducible polynomial 
P ∈ Fq[X ] of degree n. 

Alice Bob 
$

(x , y ) ← Fn
qm × Fn

qm s.t. 
Supp(x) = Supp(y ) of dim d h

h ← x−1y mod P 
−−−−−→ (e1, e2) 

$← Fn 
qm × Fn 

qm s.t. 
Supp(e1, e2) = E of dim r 

xs = xe1 + y e2 mod P 
s←−−−−− s = e1 + e2h mod P 

E ← LRPC.Deco de(x , y , xs, r) 

G (E) 
Shared 
Secret G (E) 
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Description of the schemes 

LOCKER, a Public Key Encryption 

Our schemes contain an hash function G modeled as a ROM and an irreducible polynomial 
P ∈ Fq[X ] of degree n. 
KeyGen(1λ): 

$
(x , y) ← Fq

n
m × Fq

n
m s.t. Supp(x) = Supp(y) of dim d 

h ← x−1y mod P 

sk := (x , y ), pk := h 

Bob Alice 
$

(e1, e2) ← Fn
qm × Fn

qm s.t. xs = xe1 + ye2 mod PSupp(e1, e2) = E of dim r 
C ,s E ← LRPC.Decode(x , y , xs, r)s = e1 + e2h mod P −−−−−→ L L M = C G (E )

C = M G (E ) 
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Applying HHK [5] to LOCKER PKE → IND-CCA2 LOCKER KEM
IND-CCA2 LOCKER KEM → LOCKER HE

Security and parameters 

Semantic Security 

Theorem 
Under the assumption of the hardness of the I − LRPC and the I − RSD problems, LAKE and 
LOCKER are IND-CPA in the Random Oracle Model. 
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Quantum Speed-Up: Grover’s algorithm directly applies to GRS+ =⇒ exponent is
divided by 2 [2].

I− RSD I− LRPC

O
�
(nm)3q

1
2

�
r
l
m(n+1)

2n

m
−m

��
O
�
(nm)3q

1
2(ddm

2 e−m−n)
�

Security and parameters 

Known Attacks 

Combinatorial attacks: try to guess the support of the error or of the small-weight 
codeword. The best algorithm is GRS+ [1]. On average: 

I − RSD I − LRPC� l m � � �m(n+1)
r −m ddm e−m−n2nO (nm)3q O (nm)3q 2 
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Security and parameters 

Examples of parameters: LAKE 

All the times are given in ms, performed on an Intel Core i7-4700HQ CPU running at 3.40GHz. 

Security Message/key 
Size (bits) 

KeyGen 
Time 

Encap 
Time 

Decap 
Time 

Probability 
of failure 

128 3,149 0.65 0.13 0.53 < 2−30 

192 4,717 0.73 0.13 0.88 < 2−32 

256 6,313 0.77 0.15 1.24 < 2−36 
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Security and parameters 

Examples of parameters: LOCKER 

All the times are given in ms, performed on an Intel Core i7-4700HQ CPU running at 3.40GHz. 

Security PK Size 
(bits) 

CT Size 
(bits) 

Encrypt 
Time 

Decrypt 
Time 

Probability 
of failure 

128 5,893 6,405 0.22 1.04 < 2−64 

192 8,383 8,895 0.23 1.08 < 2−64 

256 9,523 10,023 0.25 1.58 < 2−64 

128 12,367 12,879 0.56 1.99 < 2−128 

192 15,049 15,561 0.56 2.03 < 2−128 

256 17,113 17,625 0.62 2.76 < 2−128 
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Security and parameters 

Thank you for your attention !
Any questions ? 
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Security and parameters 
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