The Lifted UOV signature scheme

Ward Beullens Bart Preneel
Alan Szepieniec Frederik Vercauteren

imec COSIC

5 April 2018
Introduction

The **Lifted Unbalanced Oil and Vinegar** scheme is a variant of the UOV signature scheme.

One of the oldest and best studied multivariate signature schemes is **Unbalanced Oil and Vinegar** (UOV). It is fast and has small signatures, but the **public keys are large**.

We propose a simple adaptation of UOV that has **much smaller public keys**.
Outline of the talk

1. Unbalanced Oil and Vinegar
2. The main improvement
3. Brief security analysis
4. Some more improvements
5. Conclusion
The UOV signature scheme uses a map $\mathcal{F} : \mathbb{F}_q^n \to \mathbb{F}_q^m$ known as a UOV map.

Partition the n variables into $v = n - m$ vinegar variables x_1, \cdots, x_v and m oil variables x_{v+1}, \cdots, x_n. A UOV map consists of m Polynomials of the form

$$f(x) = \sum_{i=1}^{v} \sum_{j=i}^{n} \alpha_{i,j} x_i x_j + \sum_{i=1}^{n} \beta_i x_i + \gamma$$

$\alpha_{i,j}, \beta_i, \gamma \in \mathbb{F}_q$

Given $y \in \mathbb{F}_q^m$ we can efficiently find $x \in \mathbb{F}_q^n$ such that $\mathcal{F}(x) = y$.

1. Pick values for the vinegar variables randomly
2. Solve linear system of m equations and m variables to find the values of the oil variables.
We hide the structure of \mathcal{F} by composing it with a random invertible linear map \mathcal{T} to get the public key $\mathcal{P} = \mathcal{F} \circ \mathcal{T}$. The public key $(\mathcal{F}, \mathcal{T})$ can be used to find preimages of \mathcal{P}.

Signature scheme:

Key generation: Pick \mathcal{F}, \mathcal{T} randomly, compute $\mathcal{P} = \mathcal{F} \circ \mathcal{T}$

Signing: Hash and sign: $s = \mathcal{P}^{-1}(\mathcal{H}(d))$

Verification: check if $\mathcal{P}(s) = \mathcal{H}(d)$
The public key consists of m quadratic polynomials in n variables, so roughly $m \frac{n^2}{2} \log_2(q)$ bits

Example

For 128 bits of security we have $m \approx 50$, $n \approx 150$, and $q = 2^8$, so

$$|pk| \approx 50 \times \frac{150^2}{2} \times 8 \text{ bits} \approx 560 \text{ KB}.$$
The public key consists of \(m \) quadratic polynomials in \(n \) variables, so roughly \(m \frac{n^2}{2} \log_2(q) \) bits.

Example

For 128 bits of security we have \(m \approx 50 \), \(n \approx 150 \), and \(q = 2^8 \), so

\[
|pk| \approx 50 \times \frac{150^2}{2} \times 8 \text{ bits} \approx 560 \text{ KB}.
\]

Optimization by Petzoldt reduces \(|pk| \) to \(\frac{m^3}{2} \log_2(q) \)

Example

\[
|pk| \approx \frac{50^3}{2} \times 8 \text{ bits} \approx 62 \text{ KB}
\]
The hardness of solving polynomial systems depends on the size of the field.

Figure: The number of variables needed such that solving a polynomial system is hard for different finite fields.
The idea is to use two fields:

- A small field \mathbb{F}_2 for the public and secret keys i.e. P, F and T
- A large extension for output of H and the signatures. e.g. $\mathbb{F}_{2^{32}}$

The maps P, F and T are defined over \mathbb{F}_2, but lifted to a large extension field.

Key generation is identical to UOV over \mathbb{F}_2, signature generation and verification is identical to UOV over the large field.
Forging a signature for a document d requires finding a solution to a multivariate system over \mathbb{F}_{31}.

\[
\begin{align*}
18x_1^2 + 7x_1x_2 + 5x_3 + 22x_1x_4 + 29x_4x_5 + 3x_5 & \equiv 20 \pmod{31} \\
6x_2x_3 + 12x_3^2 + 25x_2x_6 + 7x_3x_4 + 11x_3x_5 + 30x_6^2 & \equiv 11 \pmod{31} \\
15x_1x_2 + 9x_2x_3 + 12x_3x_4 + 25x_2 + 28x_5x_6 & \equiv 8 \pmod{31}
\end{align*}
\]

$\mathcal{P}(x)$ $\mathcal{H}(d)$
Forging a signature for a document d requires finding a solution to a multivariate system over $\mathbb{F}_{2^{32}}$.

\[
\begin{align*}
x_1^2 + x_1x_2 + x_3 + x_1x_4 + x_4x_5 + x_5 &= 1 + \alpha^2 + \cdots + \alpha^{30} \\
x_2x_3 + x_3^2 + x_2x_6 + x_3x_4 + x_3x_5 + x_6^2 &= 1 + \alpha + \cdots + \alpha^{29} \\
x_1x_2 + x_2x_3 + x_3x_4 + x_2 + x_5x_6 &= \alpha + \alpha^5 + \cdots + \alpha^{31}
\end{align*}
\]
Direct attack

A direct attack tries to solve the system $P(s) = H(d)$ to forge a signature s.

- Theoretically: Degree of regularity of the system is the same as in the case of UOV over the large field.
- Experimentally: The Algebraic solver F_4 is not significantly better at attacking the new scheme than in the case of original UOV over the large field.

Key recovery attack

Tries to recover the secret key (F, T) from the public key P. This attack is fully equivalent to key recovery attack against UOV over F_2, so attacks are well understood.
We use a secret key in ‘normal form’, i.e. T of the form

$$
\begin{pmatrix}
1_{v \times v} & T \\
0_{m \times v} & 1_{m \times m}
\end{pmatrix}
$$

We store the randomness used to generate the public key, and recompute the secret key each signing session needed.

Message recovery mode ($\pm 15\%$ of $|\text{sig}|$).

Trade off between $|\text{sig}|$ and $|\text{pk}|$.

Table: Parameter sets achieving security level 2 of NIST

| (q, m, n) | $|\text{sig}|$ | $|\text{pk}|$ | $|\text{sk}|$ | KeyGen | Sign | Verify |
|-------------------|----------------|----------------|--------------|--------|-------|--------|
| $(2^8, 63, 256)$ | 0.3 KB | 15.5 KB | 32B | 21 Mc | 5.6 Mc | 4.9 Mc |
| $(2^{48}, 49, 242)$ | 1.7 KB | 7.3 KB | 32B | 15 Mc | 34 Mc | 24 Mc |
Advantages / Disadvantages

| sl | \((q, m, n)\) | \(|\text{sig}|\) | \(|\text{pk}|\) | \(|\text{sk}|\) | KeyGen | Sign | Verify |
|----|---------------|----------------|---------------|---------------|--------|------|--------|
| 2 | \((2^8, 63, 256)\) | 0.3 KB | 16 KB | 32B | 21 | 6 | 5 |
| 4 | \((2^8, 90, 351)\) | 0.4 KB | 45 KB | 32B | 81 | 22 | 17 |
| 5 | \((2^8, 117, 404)\) | 0.5 KB | 97 KB | 32B | 146 | 36 | 30 |

Disadvantages:
- Public key size
 (But 10x smaller than other MQ schemes)
- no security reduction

Advantages:
- Signature size
- Secret key size (minimal)
- Based on UOV
 (since 1999)