LIZARD:

PUBLIC KEY ENCRYPTION AND
KEY ENCAPSULATION MECHANISM

JUNG HEE CHEON, SANGJOON PARK, JOOHEE LEE,
DUHYEONG KIM, YONGSOO SONG, SEUNGWAN HONG,
DONGWOO KIM, JINSU KIM, SEOUNG-MIN HONG,

AARAMYUN, JEONGSU KIM, HAERYONG PARK,

EUNYOUNG CHOI, KIMOON KIM, JUN-SUB KIM, JIEUN LEE

CONTENTS

m Overview

= Main Strengths

m Security

® Parameter Selection

® Summary on Performance
= Flexibility

® Further Improvements (in progress)

OVERVIEW

IND-CCA Secure PKE

IND-CPA Secure PKE Lizard. CCA
plLCli IND-CCA Secure KEM
>

FO Transformation Lizard. KEM

vI |

= Ring versions are also provided

® Parameter Suggestions for Category 1/3/5, resp.

MAIN STRENGTHS

|. [Simpler and Faster] algorithms;

= Use LWR in the Encryption/Encapsulation phases

m Use sparse signed binary or signed binary secrets

2. [Ciphertext Compression] via LVWWR-style rounding (vs. LWE-style)

3. [Provable IND-CPA, IND-CCA2 Security] from (R)LWE & (R)LWR with
small secrets

4. [Parameters Resist All Known Attacks] unless a significant breakthrough

® Cryptographically negligible Dec. Fail. Rates
® Based on the Core SVP hardness (Methodology of NewHope)

MAIN STRENGTHS -- SIMPLER

|. Enc of typical LWE based PKE requires two random components:
® Ephemeral secret vector (or matrix)

" Error vector (or matrix)

2. Using LWR rounding in Enc/Encaps rules out generating error vectors

3. Further use sparse signed binary or signed binary secrets

Encryption Procedure Algorithm

|. Generation: random sparse binary vector r«{-1,0,1}"
2. Subset-sum: row vectors of PK (simple & fast) (a,b) « (A'#,B'7)
3. Addition: an encoded msg vector (simple & fast) (a,b) « (a, b + 2¥m)

4. Rounding: via addition & bit shifting (simple & fast) (0 5) (la+2£’—1| lb+2€—1 |)
’ 2t 1’1 2f

A€z, B € z™¥, (A,B):PK, k=logqg —1, +¢=logq —logp

MAIN STRENGTHS -- FAST

= Qur C implementation for Lizard. CCA shows that Enc takes only 0.03| ms fo
r Category | and 32-byte msgs (0.036 ms for RLizard.CCA)

Parameter KeyGen Enc
(# kcycles) | (# kcycles) (# kcycles)

Lizard. CCA CCA_CATEGORY | _N536 406 432
CCA_CATEGORY|_N663 459 082 83 94
RLizard. CCA RING_CATEGORY| 1167 04 101

* Performance measured on Linux with CPU Intel Xeon E5-2640 v3 at 2.60GHz

SECURITY

= | izard.CPA is IND-CPA secure under the hardness assumption of LWE
and LWR problems with small secrets,both of which have reductions
from the standard LWE

= |izard.KEM and Lizard.CCA are obtained by applying a variant of Fujisa
ki-Okamoto transform [HHK’17] for Lizard.CPA, so they are IND-C
CA2 secure in the quantum random oracle model (QROM)

® Same arguments can be applied to ring versions (RLizard.CPA, RLizard.K
EM and RLizard.CCA)

[HHK 7] Dennis Hofheinz, Kathrin Hovelmanns,and Eike Kiltz. “A modular analysis of the Fujisaki-Okamoto transformation.”
Theory of Cryptography Conference 2017.

PARAMETER SELECTION

= Mainly considered: Dual attack [Albl7] and Primal attack
[AGVW 8]

® Assume the attacks are using BKZ algorithm with Sieve
(equipped with Grover’s quantum search algorithm); Security

measured based on the Core SVP hardness as in
[NewHope]

= Dec. Fail. Rates are set to be cryptographically negligible

* [AlIbl7] Albrecht, Martin R.“On dual lattice attacks against small-secret LWE and parameter choices in HEib and SEAL.”
Eurocrypt 2017.

* [AGVW 8] Albrecht,M. R, Gopfert,F, Virdia,F, and Wunderer,T. “Revisiting the expected cost of solving uSVP and
applications to LWE.” Asiacrypt 2018.

* [NewHope] Alkim,E.,Ducas, L.,Poppelmann,T., & Schwabe, P.“Post-quantum key exchange-a new hope.” USENIX 2016.

BEST ATTACK COMPLEXITIES

log>(DFR)

KEM_CATEGORY| N663 -153.500 131 147
CCA_CATEGORY| N663
KEM_CATEGORY3 N952 -337.189 203 195
CCA_CATEGORY3_N952
KEM_CATEGORY5_N1300 332810 264 291

CCA_CATEGORYS5_NI1300

DFR : Dec. Fail. Rate exactly calculated by python code
Tiwe : Time complexity of the best known attacks of LWE
Tiwr : Time complexity of the best known attacks of LWR

BEST ATTACK COMPLEXITIES

log:(DFR)

RING_CATEGORY | -188.248 153 147
RING_CATEGORY3_N1024 -245.897 195 195
RING_CATEGORY5 -305.684 318 348

DFR : Dec. Fail. Rate exactly calculated by python code
Tiwe : Time complexity of the best known attacks of LWE
Tiwr : Time complexity of the best known attacks of LWWR

SUMMARY ON PERFORMANCE

m Sizes
e Lizard.CCA
» Sizes for 256-bit msgs (Category |):

I S N N

Sizes 1.8 MB 170 KB 0.98 KB
Comepressed upto 0.3 MB - -

« RLizard.CCA
» Sizes for 1024-bit msgs (Category |):

I S N N

Sizes 4.1 KB 0.3 KB 2.2 KB
Compressed upto |.3 KB - -

= Speeds

® Enc of Lizard is fast (from 81 kcycles for Category 1),and RLizard has balanced perfor
mances

FLEXIBILITY OF THE LIZARD

® |izard can be implemented flexibly for different purposes

® We implemented Lizard.CPA in 3 different ways for 3 different
usages:

« On ARM Core (Android, Galuxy S7); Enc:0.077 ms, Dec:0.023 ms

* For 32-bit msgs; Enc:0.009 ms, Dec:0.001 ms
 AHE; Enc:0.014 ms, Dec:0.012 ms

FURTHER IMPROVEMENTS (IN PROGRESS)

= KeyGen can be done faster by generating a random seed for each
random component and then using AES-CTR mode to expand it :

Parameter Submitted Improved
KeyGen (ms) | KeyGen (ms)
Lizard. CCA CCA_CATEGORYI_N536 71.993 3.182
CCA_CATEGORY| N663 87.848 3.863

m Use AVX2 Instruction:

Parameter Enc
(# kcycle) (# kcycle)

Lizard. CCA CCA_CATEGORY | N536
CCA_ CATEGORY| N663 52 66

Thank You !

EX |I.APPLICATION ON SMARTPHONE

® |mplemented Lizard.CPA on Android application

m Used parameters (128-bit security):

n--n-

1822

m Performance:

288.618 0.0770 0.0229

EX 2. FOR 32-BIT MESSAGES

® [mplemented Lizard.CPA with 32-bit message space

m Can be utilized on low-end devices

m Used parameters (| 19-bit security):

n--n-

724 480 303 1/2 128 -154

® Performance:

ctxt pk sk KeyGe | Enc Dec
bytes (bytes) | (bytes) [n (ms) | (ms) (ms)

A as matrix 741,376 3,840 4.749 0.009 0.001
(A as seed) (46,368) (1.891) (0.052)

EX 3. ADDITIVE HOMOMORPHIC ENCRYPTION

® Post-quantum alternative for AHE

m Parameters (|28-bit security):

nn-n-

1024 21000

® Performance:

ctxt pk sk KeyGe | Enc Dec | Add
(bytes) | (bytes) (bytes) [n (ms) |(ms) |(ms) | (ms)

A as matrix 1,876 2,195456 52,224 25923 0.014 0.012 0.0005
(A as seed) (524,320) (21.444) (0.092)

