NIST status update on Elliptic Curves and Post-Quantum Crypto

Dustin Moody
Elliptic Curve Crypto in NIST Standards

- **FIPS 186-4, Digital Signature Standard**
 - Elliptic Curve Digital Signature Algorithm (ECDSA)
 - 15 recommended curves
 - Also has DSA, RSA signatures

- **SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes using Discrete Logarithm Cryptography**
 - Elliptic Curve Diffie Hellman (ECDH)
 - Elliptic Curve authenticated key agreement (ECMQV)
Changes in FIPS 186-5

- New requirement to publish seeds for DSA signatures
- X9.31 RSA signatures removed
- Larger key sizes (2048 bits or more) for RSA signatures allowed
- More elliptic curve details added
 - New SP 800-186 has most of them
 - New elliptic curves specified (Edwards25519 and Edwards448)
- The EdDSA signature algorithm is included
- Deterministic version of ECDSA included
- Various minor improvements/corrections to algorithms in appendices
DSA signatures

- Two of the domain parameters for DSA are prime numbers \(p \) and \(q \), where \(p - 1 = h \cdot q \)
 - These primes are supposed to be generated deterministically, from a random seed
- Recent research showed that DSA primes could be generated in such a way that there is a trapdoor
 - With knowledge of the trapdoor, one can compute discrete logs efficiently, which breaks the security of DSA
 - It seems hard to detect if such a trapdoor is present
- Recommended remedy: publish the seed
 - The trapdoor primes have to be specially constructed; publishing the seed shows this wasn’t done

- FIPS 186-5 makes publishing the seeds mandatory
RSA signatures

- FIPS 186-4 includes RSA signatures using X9.31 and PKCS #1

- ANSI X9.31 was withdrawn, so we have also withdrawn it
 - It included PRNGs -- we have updated guidance in the SP 800-90 series

- FIPS 186-4 required RSA key sizes of length 1024, 2048, or 3072 bits
- **FIPS 186-5 to allow any key size with (even) length ≥ 2048**
Elliptic Curve Crypto in FIPS 186

- FIPS 186-4 included an elliptic curve analogue of DSA, called ECDSA
 - Mostly referred to ANSI X9.62 for specific details
 - Included specifications of the NIST curves

- ANSI X9.62 was withdrawn, so for FIPS 186-5 we added back in the details needed to implement ECDSA
 - X9.142 is under development, which will specify ECDSA

- In addition, we are adding new elliptic curve signature algorithms (deterministic ECDSA and EdDSA) and new elliptic curves (Edwards25519 and Edwards448).

- We will put many of the elliptic curve details in a new document SP 800-186.
Deterministic Signatures

- The past decade has seen some attacks which resulted from bad random number generation in signature schemes
- Deterministic signatures desired (for some applications)
 - Deterministic schemes need to be carefully protected against side-channel attacks, particularly in hardware implementations
- Two deterministic schemes to be added in FIPS 186-5
 1. Deterministic ECDSA: Following IETF RFC 6979, instead of generating the per-message-secret k randomly, generate it deterministically, and follow the rest of ECDSA unchanged.
 2. EdDSA (see the next slides)
Edwards Curves

- The NIST curves are all in Weierstrass form
- For example, the prime curves look like:

\[y^2 = x^3 - 3x + b \]

- Recent research in ECC found a new model: Edwards curves

\[x^2 + y^2 = 1 + dx^2y^2 \]

- Edwards curves can be implemented faster, and in a uniform way providing easier constant time implementations
EdDSA

- IETF RFC 8032 specified an Edwards curve digital signature algorithm, known as EdDSA.
 - Based off of Schnorr signatures
- 2 sets of parameters:
 - Ed25519, providing approximately 128 bits of security (uses Edwards version of Curve25519)
 - Ed448, which provides approximately 224 bits of security
- EdDSA is deterministic – care must be taken against side channel attacks
- Also includes a “pre-hash” version, which signs $\text{Hash}(M)$, not M

- Note: Curve25519/X25519 not currently in SP800-56A, possibly added in future
ECC - Looking forward

- No more major changes expected for FIPS 186-5 and SP 800-186

- The draft versions for public comment will be available by May

- Send questions or comments to:
 dustin.moody@nist.gov
The Quantum Threat

• Quantum computers

• Impact on cryptography
 • Shor’s algorithm
 • RSA, Elliptic-Curve crypto dead
 • Grover’s algorithm
 • Need longer AES keys/hash outputs

• Why worry now?
 • How long does your information need to be secure (x years)
 • How long to re-tool with a quantum safe solution (y years)
 • How long until a large-scale quantum computer is built (z years)

Theorem: If $x + y > z$, then worry!

What do we do here??

secret keys revealed
The NIST PQC Project

- **Post Quantum Cryptography**
 - Cryptosystems which run on classical computers, and are considered to be resistant to quantum attacks

- NIST public-key crypto standards vulnerable to quantum attacks:
 - FIPS 186-5, *The Digital Signature Standard* (RSA, DSA, ECDSA)
 - SP 800-56A, *Recommendation for Pair-Wise Key Establishment Schemes using Discrete Logarithm Cryptography* (DH, ECDH, MQV)
 - SP 800-56B, *Recommendation for Pair-Wise Key Establishment Schemes using Integer Factorization Cryptography* (RSA)

- In 2016, NIST announced a competition-like process to select quantum-resistant public-key algorithms for standardization
 - A small number will likely be selected for each functionality

- **Scope:** Digital signatures, Public-key encryption, Key-establishment mechanisms (KEMs)
Timeline

- 2012 – NIST establishes PQC project
- April 2015 – 1st NIST PQC Workshop
- Aug 2015 – NSA statement “…IAD will initiate a transition to quantum resistant algorithms in the not too distant future…”
- Feb 2016 – NIST Report on PQC (NISTIR 8105)
- Feb 2016 – NIST announcement of PQC “competition”
- Dec 2016 – Final submission requirements and evaluation criteria published
- Nov 2017 – Submission deadline
- Dec 2017 – 1st Round candidates announced
- April 2018 – 1st NIST PQC Standardization Conference (slides)
- Jan 2019 – 2nd Round candidates announced
Evaluation Criteria

- **Security** – against both classical and quantum attacks

<table>
<thead>
<tr>
<th>Level</th>
<th>Security Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>At least as hard to break as AES128 (exhaustive key search)</td>
</tr>
<tr>
<td>II</td>
<td>At least as hard to break as SHA256 (collision search)</td>
</tr>
<tr>
<td>III</td>
<td>At least as hard to break as AES192 (exhaustive key search)</td>
</tr>
<tr>
<td>IV</td>
<td>At least as hard to break as SHA384 (collision search)</td>
</tr>
<tr>
<td>V</td>
<td>At least as hard to break as AES256 (exhaustive key search)</td>
</tr>
</tbody>
</table>

- NIST asked submitters to focus on levels 1,2, and 3. (Levels 4 and 5 are for very high security)

- **Performance** – measured on various classical platforms

- **Other properties:**
 - Drop-in replacements, Perfect forward secrecy, Resistance to side-channel attacks, Simplicity and flexibility, Misuse resistance, etc…
The Submissions

- 82 total submissions received from 25 Countries, 6 Continents (and 16 states)
 - A total of 278 submitters
- **69 accepted** as “complete and proper” (5 since withdrawn)
- Most submitted schemes (or previous versions) have been published previously – In general, no big surprises

<table>
<thead>
<tr>
<th></th>
<th>Signatures</th>
<th>KEM / Encryption</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice-based</td>
<td>5</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>Code-based</td>
<td>2</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Multi-variate</td>
<td>7</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Stateless Hash-based</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>45</td>
<td>64</td>
</tr>
</tbody>
</table>
The 1st Round

- Evaluation and analysis phase lasting about a year
 - Security proofs (IND-CPA/IND-CCA2 and EUF-CMA)
 - Quantum/classical algorithm complexity for attacks
 - Precise claims against quantum computation
 - Lots of uncertainty here, but we still need concrete parameters and security estimates
- Cryptanalysis
 - Many schemes attacked or broken
- Performance testing
 - Libraries like SUPERCOP and OpenQuantumSafe
 - Side-channel resistance
- IP concerns
- Official Comments and the pqc-forum
- Merging submissions
The Selection Process

▪ Used evaluation criteria: Security, Cost and Performance, Algorithm and Implementation characteristics

▪ Security arguments in submission, external analysis, internal NIST cryptanalysis

▪ NIST studied each submission in detail

▪ Implemented attacks. Attacks that called security into question.

▪ Overall quantity, quality and maturity of analysis on each scheme

▪ While performance was not the key factor, we did note apparent performance characteristics. External and internal benchmarks.

▪ Some unique and elegant designs. Diversity of algorithms important.

▪ Compared schemes against similar schemes, in cases where there were many
The 2nd Round Candidates

- **Encryption/KEMs (17)**
 - BIKE
 - Classic McEliece
 - CRYSSTALS-KYBER
 - FrodoKEM
 - HQC
 - LAC
 - LEDAcrypt (merger of LEDAkm/kc)
 - NewHope
 - NTRU (merger of NTRUEncrypt/NTRU-HRSS-KEM)
 - NTRU Prime
 - NTS-KEM
 - ROLLO (merger of LAKE/LOCKER/Ouroboros-R)
 - Round5 (merger of Hila5/Round2)
 - RQC
 - SABER
 - SIKE
 - Three Bears

- **Digital Signatures (9)**
 - CRYSSTALS-DILITHIUM
 - FALCON
 - GeMSS
 - LUOV
 - MQDSS
 - Picnic
 - qTESLA
 - Rainbow
 - SPHINCS+

NIST Report on the 1st Round: https://doi.org/10.6028/NIST.IR.8240
What’s Next

- 2nd Round Candidate teams may make tweaks
 - Deadline: March 15, 2019
 - NIST will publish accepted updated submissions shortly thereafter

- 2nd NIST PQC Standardization Conference
 - August 22-24, 2019 in Santa Barbara, CA
 - Co-located with CRYPTO 2019
 - Call for Papers – deadline May 31, 2019

- More analysis…

- Either 3rd Round or Selection of algorithms for standardization
PQC Summary

- 26 Candidates advance into the 2nd Round

- Post-quantum crypto standardization will be a long journey

- Be prepared to transition to new algorithms in 10 years
 - Facilitate crypto-agility

- We will continue to work in an open and transparent manner with the crypto community for PQC standards

- Check out www.nist.gov/pqcrypto
 - Sign up for the pqc-forum for announcements & discussion

- Send us comments or questions at pqc-comments@nist.gov
 - For example, what constitutes unacceptable key sizes or performance?