Diagonal dominant Reduction for lattice-based Signature

Thomas PLANTARD, Arnaud SIPASSEUTH, Cedric DUMONDELLE, Willy SUSILO

Institute of Cybersecurity and Cryptology
University of Wollongong

http://www.uow.edu.au/~thomaspl
thomaspl@uow.edu.au

13 April 2018
Outline

1 Description
2 Security Analysis
3 Comments
4 Specificity
General Description

Lattice based Digital Signature

- Work proposed in PKC 2008 *without* existing *attack*.
- Initially proposed to make GGHSign resistant to *parallelepiped* attacks.
- Modified to gain efficiency: avoid costly *Hermite Normal Form*.

Secret key: Diagonal Dominant Basis B of a lattice L

Public key: A basis P of the same lattice $P = UB$

Signature of a message m: a vector s such that $(m - s) \in L$ and $\|s\|_\infty < D$

Signature security related to GDD_∞.
General Description

Lattice based Digital Signature

- Work proposed in PKC 2008 **without** existing **attack**.
- Initially proposed to make GGHSign resistant to **parallelepiped** attacks.
- Modified to gain efficiency: avoid costly **Hermite Normal Form**.

Lattice based Digital Signature

- Secret key: **Diagonal Dominant** Basis $B = D - M$ of a lattice \mathcal{L}
- Public key: A basis P of the same lattice $P = UB$
- Signature of a message m: a vector s such that $(m - s) \in \mathcal{L}$ and $\|s\|_\infty < D$
- Signature security related to GDD_∞.
A diagonal Dominant Basis with $N_b \pm b$ and $N_1 \pm 1$.

With a cyclic structure but for the signs.
A diagonal Dominant Basis with $N_b \pm b$ and $N_1 \pm 1$.

With a \textit{cyclic} structure \textbf{but for the signs}.

\[
B = \begin{pmatrix}
D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 \\
0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 \\
\pm 1 & 0 & D & 1 & 1 & \pm b & 0 & \pm b & \pm 1 & 0 \\
0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 \\
\pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b \\
\pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 \\
0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b \\
\pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 \\
\pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 \\
\pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D
\end{pmatrix}
\]
A diagonal Dominant Basis with $N_b \pm b$ and $N_1 \pm 1$.

With a **cyclic** structure **but for the signs**.

$$B = \begin{pmatrix}
D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 \\
0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 \\
\pm 1 & 0 & D & 1 & 1 & \pm b & 0 & \pm b & \pm 1 & 0 \\
0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 \\
\pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm b & 0 & \pm b & 0 \\
\pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 \\
0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b \\
\pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 \\
\pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 \\
\pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D
\end{pmatrix}$$

Growing b creates a gap between Euclidean Norm and Manhattan Norm

Cyclic structure to guarantee $\|M\|_{\infty} = \|M\|_1$
Public Key

- \(P = UB \) with \(U = P_{R+1} T_R P_R ... T_1 P_1 \)
- With \(P_i \) a random permutation matrix and...
Public Key

- \(P = UB \) with \(U = P_{R+1} T_R P_R ... T_1 P_1 \)
- With \(P_i \) a random permutation matrix and

\[
T_i = \begin{pmatrix}
A^\pm 1 & 0 & 0 & 0 \\
0 & A^\pm 1 & 0 & 0 \\
0 & 0 & A^\pm 1 & 0 \\
0 & 0 & 0 & A^\pm 1
\end{pmatrix}
\]

with

\[
A^+ = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix},
A^- = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}
\]
Public Key

- \(P = UB \) with \(U = P_{R+1} T_R P_R ... T_1 P_1 \)
- With \(P_i \) a random permutation matrix and
 \[
 T_i = \begin{pmatrix}
 A^\pm 1 & 0 & 0 & 0 \\
 0 & A^\pm 1 & 0 & 0 \\
 0 & 0 & A^\pm 1 & 0 \\
 0 & 0 & 0 & A^\pm 1
 \end{pmatrix}
 \]
 with
 \[
 A^{\pm 1} = \begin{pmatrix}
 1 & 2 \\
 1 & 1
 \end{pmatrix}, A^{-1} = \begin{pmatrix}
 -1 & 2 \\
 1 & -1
 \end{pmatrix}
 \]

- \(U \) and \(U^{-1} \) can be computed efficiently.
- \(U, U^{-1}, P \) coefficients are **growing regularly** during the \(R \) step.
As $B = D - M$, we have $D \equiv M \pmod{L}$

$\|M\|_1 < D$ to guarantee short number of steps.
Signing

As $B = D - M$, we have $D \equiv M \pmod{L}$

$\|M\|_1 < D$ to guarantee short number of steps.

Vector Reduction

1. $w \leftarrow \text{Hash}(m)$
2. until $\|w\|_{\infty} < D$
 1. Find q, r such $w = r + qD$
 2. Compute $w \leftarrow r + qM$

Efficiency: No needs for large arithmetic.

Security: Algorithm termination related to a public parameter D.
As \(B = D - M \), we have \(D \equiv M \mod \mathcal{L} \)

\[\| M \|_1 < D \] to guarantee short number of steps.

Vector Reduction

1. \(w \leftarrow \text{Hash}(m) \)
2. until \(\| w \|_\infty < D \)
 1. Find \(q, r \) such \(w = r + qD \)
 2. Compute \(w \leftarrow r + qM \)

- Efficiency: No needs for large arithmetic.
- Security: Algorithm termination related to a public parameter \(D \).
Signature Verification

Alice Helps Bob

- Alice sends s such that $\text{Hash}(m) - s \in \mathcal{LP}$.
- Alice sends k such that $kP = \text{Hash}(m) - s$.
- During signing, Alice extracts q such that $q(D - M) = \text{Hash}(m) - s$.
- Alice compute $k = qU^{-1}$.

$\|s\|_{\infty} < D$, and $qP = \text{Hash}(m) - s$.
Alice Helps Bob

- Alice sends s such that $\text{Hash}(m) - s \in \mathcal{LP}$.
- Alice sends k such that $kP = \text{Hash}(m) - s$
- During signing, Alice extracts q such that $q(D - M) = \text{Hash}(m) - s$
- Alice computes $k = qU^{-1}$.

Bob checks that

- $\|s\|_{\infty} < D$,
- and $qP = \text{Hash}(m) - s$.
Best Known Attack

Find the Unique Shortest Vector of the lattice

\[
\begin{pmatrix}
 \nu \\
 \nu
\end{pmatrix}
\]

with \(\nu = (D, 0, \ldots, 0) \) and a lattice gap

\[
\gamma = \frac{\lambda_2}{\lambda_1} \leq \frac{\Gamma\left(\frac{n+3}{2}\right) \frac{1}{n+1} \|D - M\|_2^{\frac{n}{n+1}}}{\|M\|_2} = \frac{\Gamma\left(\frac{n+3}{2}\right) \frac{1}{n+1} (D^2 + N_b b^2 + N_1) \frac{n}{2(n+1)}}{\sqrt{N_b b^2 + N_1}}
\]
Best Known Attack

Find the Unique Shortest Vector of the lattice

\[
\begin{pmatrix}
 v \\
 P
\end{pmatrix}
\]

with \(v = (D, 0, \ldots, 0) \) and a lattice gap

\[
\gamma = \frac{\lambda_2}{\lambda_1} \leq \frac{\Gamma\left(\frac{n+3}{2}\right) \frac{1}{n+1} \|D - M\|_{2}^{\frac{n}{n+1}}}{\|M\|_{2}} = \frac{\Gamma\left(\frac{n+3}{2}\right) \frac{1}{n+1} (D^2 + N_b b^2 + N_1) \frac{n}{2(n+1)}}{\sqrt{N_b b^2 + N_1}}
\]

Conservator Choices

<table>
<thead>
<tr>
<th>Dimension</th>
<th>(N_b)</th>
<th>(b)</th>
<th>(N_1)</th>
<th>(\Delta)</th>
<th>(R)</th>
<th>(\gamma)</th>
<th>(2^\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>912</td>
<td>16</td>
<td>28</td>
<td>432</td>
<td>32</td>
<td>24</td>
<td>(< \frac{1}{4}(1.006)^{d+1})</td>
<td>(2^{128})</td>
</tr>
<tr>
<td>1160</td>
<td>23</td>
<td>25</td>
<td>553</td>
<td>32</td>
<td>24</td>
<td>(< \frac{1}{4}(1.005)^{d+1})</td>
<td>(2^{192})</td>
</tr>
<tr>
<td>1518</td>
<td>33</td>
<td>23</td>
<td>727</td>
<td>32</td>
<td>24</td>
<td>(< \frac{1}{4}(1.004)^{d+1})</td>
<td>(2^{256})</td>
</tr>
</tbody>
</table>
Yang Yu and Leo Ducas Attack

- When \(b \) is too big compare to other value of \(M \),
- **Machine learning** can extract position of \(b \) related to \(D \).
- Sign of \(b \) could also sometime be extracted.

Consequence

BDD attack is simpler as the gap of new problem bigger.
Yang Yu and Leo Ducas Attack

- When \(b \) is too big compared to other values of \(M \),
- **Machine learning** can extract position of \(b \) related to \(D \).
- Sign of \(b \) could also sometimes be extracted.

Consequence

BDD attack is simpler as the gap of new problem bigger.

Solutions

1. Find which sizes of \(b \) requires \(2^{64} \) signatures: current attack \(2^{17} \) for \(b = 28 \).
2. Uses \(b \) smaller: if \(b \) small, dimension increases by 20% to 30%.
Specificity

- Digital Signature using **Hidden Structured** Lattice.
- **Diagonal Dominant** Basis.
Specificity

- Digital Signature using **Hidden Structured** Lattice.
- **Diagonal Dominant** Basis.

Advantage

- **Generic** Lattice *without large integer* arithmetic.
- Use **Max Norm** to minimise leaking.
Specificity

- Digital Signature using **Hidden Structured Lattice**.
- **Diagonal Dominant** Basis.

Advantage

- **Generic** Lattice *without large integer* arithmetic.
- Use **Max Norm** to minimise leaking.

Disadvantage

- **Quadratic structure** is memory costly.
- **Verification still slower** than signing.
Odd Manhattan

Thomas PLANTARD

Institute of Cybersecurity and Cryptology
University of Wollongong

http://www.uow.edu.au/~thomaspl
thomaspl@uow.edu.au

13 April 2018
Lattice based Cryptosystem

- Using **Generic Lattice** generated from its **Dual**.
- Dual created from an **Odd Vector** of bounded **Manhattan** norm.
Lattice based Cryptosystem

- Using **Generic Lattice** generated form its **Dual**.
- Dual created from an **Odd** Vector of bounded **Manhattan** norm.

Lattice based Key Encryption Message

- Encrypt a message m in the **parity bit** of a vector close to the lattice.
- CCA achieved using classic method i.e. Dent’s.
Public Key Encryption

Setup

- Alice chooses 3 public parameters:
 1. d a lattice dimension,
 2. b an upper bound,
 3. p a prime number.
- Alice creates a secret random vector $w \in \mathcal{M}_{d,l}$ i.e.
 1. with w_i odd,
 2. with $\sum_{i=1}^{d} |w_i|$ bounded by $l = \left\lfloor \frac{p-1}{2b} \right\rfloor$
- Alice publishes the Lattice \mathcal{L} such that $w \in \mathcal{L}^*$.
Public Key Encryption

Setup
- Alice chooses 3 public parameters:
 1. d a lattice dimension,
 2. b an upper bound,
 3. p a prime number.
- Alice creates a secret random vector $w \in \mathcal{M}_{d,l}$ i.e.
 1. with w_i odd,
 2. with $\sum_{i=1}^{d} |w_i|$ bounded by $l = \lfloor \frac{p-1}{2b} \rfloor$
- Alice publishes the Lattice \mathcal{L} such that $w \in \mathcal{L}^*$.

Encryption/Decryption
- To encrypt $m \in \{0, 1\}$, Bob computes v such that $\exists u$
 1. $(v - u) \in \mathcal{L}$
 2. $\|u\|_\infty \leq b$
 3. $\sum_{i=1}^{d} u_i \mod 2 = m$
- To decrypt, Alice extracts $m = (vw^t \mod p) \mod 2$.

Probability that a random lattice could be a public key

Theorem

Let \mathcal{L} a full rank lattice of determinant $p > 2$ prime and dimension $d > 1$, and $l \in \mathbb{N}^*$, the probability that a Lattice does not have such vector in its dual $\mathcal{L}^* \cap \mathcal{M}_{d,l} = \emptyset$ is given by

$$P_{p,d,l} = \left(1 - \frac{1}{p^{d-1}}\right)^{2d-1} \left\lfloor \frac{l+d}{2d} \right\rfloor$$
Probability that a random lattice could be a public key

Theorem

Let \mathcal{L} a full rank lattice of determinant $p > 2$ prime and dimension $d > 1$, and $l \in \mathbb{N}^*$, the probability that a Lattice does not have such vector in its dual $\mathcal{L}^* \cap \mathcal{M}_{d,l} = \emptyset$ is given by

$$P_{p,d,l} = \left(1 - \frac{1}{p^{d-1}}\right)^{2^{d-1} \left\lfloor \frac{l+d}{2d} \right\rfloor}$$

Cryptosystem Parameters

By taking $p \approx 2^{d+1} b^d (d)!$, we insure that $P_{p,d,\frac{p-1}{2b}} < \frac{1}{2}$ i.e. the set of all possible public key represents more than half of the set of all generic lattices with equivalent dimension and determinant.
Computational Hardness for message security

Definition (α-Bounded Distance Parity Check (BDPCα))

Given a lattice \mathcal{L} of dimension d and a vector v such that

$$\exists u, (v - u) \in \mathcal{L}, \|u\| < \alpha \lambda_1(\mathcal{L}),$$

find $\sum_{i=1}^{d} u_i \mod 2$.

Theorem (BDDα \leq BDPCα)

For any l_p-norm and any $\alpha \leq 1$ there is a polynomial time Cook-reduction from BDDα to BDPCα.

Extracting message is as hard as...

1. BDDα with $\alpha = o(d)$ for l_∞-norm,
2. USVPγ with $\gamma = o(d)$ for l_∞-norm,
3. GapSVPγ with $\gamma = o(d^2 \log d)$ for l_∞-norm,
4. GapSVPγ with $\gamma = o(d^2 \log d)$ for l_2-norm.
Definition (α-Bounded Distance Parity Check (BDPCα))

Given a lattice \mathcal{L} of dimension d and a vector v such that $\exists u, (v - u) \in \mathcal{L}, \|u\| < \alpha \lambda_1(\mathcal{L})$, find $\sum_{i=1}^{d} u_i \mod 2$.

Theorem ($BDD_{\frac{\alpha}{4}} \leq BDPC_{\alpha}$)

For any l_p-norm and any $\alpha \leq 1$ there is a polynomial time Cook-reduction from $BDD_{\frac{\alpha}{4}}$ to $BDPC_{\alpha}$.
Computational Hardness for message security

Definition (α-Bounded Distance Parity Check (BDPCα))

Given a lattice \mathcal{L} of dimension d and a vector v such that $\exists u, (v - u) \in \mathcal{L}$, $\|u\| < \alpha \lambda_1(\mathcal{L})$, find $\sum_{i=1}^{d} u_i \mod 2$.

Theorem ($BDD_{\alpha\frac{\lambda_1(\mathcal{L})}{4}} \leq BDPC_\alpha$)

For any l_p-norm and any $\alpha \leq 1$ there is a polynomial time Cook-reduction from $BDD_{\alpha\frac{\lambda_1(\mathcal{L})}{4}}$ to $BDPC_\alpha$.

Extracting message is as hard as...

1. BDDα with $\alpha = \frac{1}{o(d)}$ for l_{∞}-norm,
2. USVPγ with $\gamma = o(d)$ for l_{∞}-norm,
3. GapSVPγ with $\gamma = o(\frac{d^2}{\log d})$ for l_{∞}-norm,
4. GapSVPγ with $\gamma = o(\frac{d^2}{\log d})$ for l_2-norm.
Find the Unique Shortest Vector of the lattice

\[
\begin{pmatrix}
 v \\
 P
\end{pmatrix}
\begin{pmatrix}
 1 \\
 0
\end{pmatrix}
\]

with a lattice gap

\[
\gamma = \frac{\lambda_2}{\lambda_1} \simeq \frac{\Gamma\left(\frac{d+3}{2}\right) \frac{1}{d+1}}{\sqrt{\pi d \frac{(b+1)b}{2b+1}}} p^{\frac{n}{n+1}}
\]
Best Known Attack

Find the Unique Shortest Vector of the lattice

\[
\begin{pmatrix}
\nu \\
\rho
\end{pmatrix}
\]

with a lattice gap

\[
\gamma = \frac{\lambda_2}{\lambda_1} \simeq \frac{\Gamma\left(\frac{d+3}{2}\right) \frac{1}{d+1} \rho^{\frac{n}{n+1}}}{\sqrt{\pi d} \frac{(b+1)b}{2b+1}}
\]

Conservator Choices

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Bound</th>
<th>Determinant</th>
<th>(\mathcal{P}_{p, d, \frac{p-1}{2b}})</th>
<th>Gap</th>
<th>(2^\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1156</td>
<td>1</td>
<td>2^{11258} - 4217</td>
<td>(\lesssim 0.336)</td>
<td>(< \frac{1}{4} (1.006)^{d+1})</td>
<td>2^{128}</td>
</tr>
<tr>
<td>1429</td>
<td>1</td>
<td>2^{14353} - 15169</td>
<td>(\lesssim 0.137)</td>
<td>(< \frac{1}{4} (1.005)^{d+1})</td>
<td>2^{192}</td>
</tr>
<tr>
<td>1850</td>
<td>1</td>
<td>2^{19268} - 7973</td>
<td>(\lesssim 0.218)</td>
<td>(< \frac{1}{4} (1.004)^{d+1})</td>
<td>2^{256}</td>
</tr>
</tbody>
</table>
Implementation

Side-Channel resistance

Constant time achieved by reorganising inner product computation.
Implementation

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

Shared Computation

- Due to CCA, implementation encrypting λ message $m = 0, 1$.
- Optimisation to *share* some **common computation** while encrypting.
Implementation

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

Shared Computation

- Due to CCA, implementation encrypting λ message $m = 0, 1$.
- Optimisation to **share** some **common computation** while encrypting.

Pseudo Mersenne

Using $p = 2^n - c$, to accelerate **modular reduction**.
Tancrede Lepoint

- **Implementation issue** regarding CCA security.
- Shared secret was not randomised when return decryption failure.
Specificity

- Secret key is composed by only one *Odd* vector of bounded *Manhattan* Norm.
- Message is encrypted in the *parity bit* of a close vector.
Specificity

- Secret key is composed by only one Odd vector of bounded Manhattan Norm.
- Message is encrypted in the parity bit of a close vector.

Advantage

- Majority of all generic lattices are potential public keys.
- As Hard as $\text{BDD} \frac{1}{o(d)}$ for l_∞—norm i.e. max norm.
- No decryption error.
- Simplicity.
Specificity

- Secret key is composed by only one Odd vector of bounded Manhattan Norm.
- Message is encrypted in the parity bit of a close vector.

Advantage

- Majority of all generic lattices are potential public keys.
- As Hard as $\text{BDD} \frac{1}{o(d)} \text{ for } l_\infty$—norm i.e. max norm.
- No decryption error.
- Simplicity.

Disadvantage

- Keys and Ciphertext size.