OUROBOROS-R, an IND-CPA KEM based on Rank Metric

NIST First Post-Quantum Cryptography Standardization Conference

Carlos AguilarMelchor2 Nicolas Aragon1 Slim Bettaieb5
Loïc Bidoux5 Olivier Blazy1 Jean-Christophe Deneuville1,4
Philippe Gaborit1 Adrien Hauteville1 Gilles Zémor3

1University of Limoges, XLIM-DMI, France; 2ISAE-SUPAERO, Toulouse, France
3IMB, University of Bordeaux; 4INSA-CVL, Bourges, France; 5Worldline, France.
OUROBOROS-R, an IND-CPA KEM based on Rank Metric
Rank Metric

We only consider codes with coefficients in \mathbb{F}_{q^m}. Let β_1, \ldots, β_m be a basis of $\mathbb{F}_{q^m}/\mathbb{F}_q$. To each vector $x \in \mathbb{F}_{q^m}^n$ we can associate a matrix M_x

$$x = (x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n \leftrightarrow M_x = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{pmatrix} \in \mathbb{F}_q^{m \times n}$$

such that $x_j = \sum_{i=1}^m x_{ij} \beta_i$ for each $j \in [1..n]$.

Definition

$$d_R(x, y) = \text{Rank}(M_x - M_y) \text{ and } |x|_r = \text{Rank } M_x.$$
Support of a Word

Definition

The support of a word is the \mathbb{F}_q-subspace generated by its coordinates:

$$\text{Supp}(x) = \langle x_1, \ldots, x_n \rangle_{\mathbb{F}_q}$$

Number of supports of weight w:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Hamming</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\left[\begin{array}{c} m \ w \end{array} \right]_q \approx q^{w(m-w)}$</td>
<td>$\binom{n}{w} \leq 2^n$</td>
</tr>
</tbody>
</table>

Complexity in the worst case:
- quadratically exponential for Rank Metric
- simply exponential for Hamming Metric
LRPC Codes

Definition

Let $H \in \mathbb{F}_{q^m}^{(n-k) \times n}$ be a full-rank matrix such that the dimension d of $\langle h_{ij} \rangle_{\mathbb{F}_q}$ is small.

By definition, H is a parity-check matrix of an $[n, k]_{q^m}$ LRPC code. We say that d is the weight of the matrix H.

A LRPC code can decode errors (recover support) of weight $r \leq \frac{n-k}{d}$ in polynomial time with a probability of failure

$$p_f < \max\left(q^{-(n-k-2(r+d)+5)}, q^{-2(n-k-rd+2)}\right)$$

→ matrices based on random small weight codewords with same support can be turned into a decoding algorithm!
Difficult problems in rank metric

Problem (Rank Syndrome Decoding problem)

Given $H \in \mathbb{F}_{q^m}^{(n-k) \times n}$, $s \in \mathbb{F}_{q^m}^{n-k}$ and an integer r, find $e \in \mathbb{F}_{q^m}^n$ such that:

- $He^T = s^T$
- $|e|_r = r$

Probabilistic reduction to the NP-Complete SD problem [Gaborit-Zémor, IEEE-IT 2016].
1. Presentation of the rank metric

2. Description of the scheme

3. Security and parameters
OUROBOROS-R scheme

Vectors x of $\mathbb{F}_{q^m}^n$ seen as elements of $\mathbb{F}_{q^m}[X]/(P)$ for some polynomial P.

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>seedh $\leftarrow {0, 1}^\lambda$, h $\leftarrow \mathbb{F}{q^m}^n$</td>
<td>h,s $\xrightarrow{}$</td>
</tr>
<tr>
<td>$(x, y) \leftarrow S_1,w(\mathbb{F}_{q^m}^n)$, $s \leftarrow x + hy$</td>
<td>$(r_1, r_2, e_r) \leftarrow S_{w_r}(\mathbb{F}_{q^m}^n)$</td>
</tr>
<tr>
<td>$F \leftarrow \text{Supp}(x, y)$</td>
<td>$E \leftarrow \text{Supp}(r_1, r_2, e_r)$</td>
</tr>
<tr>
<td>$e_c \leftarrow s_e - y s_r$</td>
<td>$s_r \leftarrow r_1 + hr_2$, $s_e \leftarrow s r_2 + e_r$</td>
</tr>
<tr>
<td>$E \leftarrow \text{QCRS-Recover}(F, e_c, w_r)$</td>
<td></td>
</tr>
<tr>
<td>Hash(E)</td>
<td>Shared Secret</td>
</tr>
</tbody>
</table>

Figure 1: Informal description of OUROBOROS-R. h and s constitute the public key. h can be recovered by publishing only the λ bits of the seed (instead of the n coordinates of h).
Why does it work?

\[\mathbf{e}_c = s_\mathbf{e} - y\mathbf{s}_r = s\mathbf{r}_2 + \mathbf{e}_r - y(r_1 + h\mathbf{r}_2) \]
\[= (x + hy)r_2 + \mathbf{e}_r - y(r_1 + h\mathbf{r}_2) = xr_2 - yr_1 + \mathbf{e}_r \]

1 \in \mathbb{F}, coordinates of \(\mathbf{e}_c \) generate a subspace of
\(\text{Supp}(r_1, r_2, \mathbf{e}_r) \times \text{Supp}(x, y) \) on which one can apply the
QCRS-Recover algorithm to recover \(E \) (LRPC decoder).

In other words: \(\mathbf{e}_c \) seen as syndrome associated to an LRPC code
based on the secret key \((x, y)\)

\(\rightarrow \) a reasonable decoding algorithm is used to decode a SMALL
weight error!

OUROBOROS-R, an IND-CPA KEM based on Rank Metric
1. Presentation of the rank metric
2. Description of the scheme
3. Security and parameters
Semantic Security

Theorem

Under the assumption of the hardness of the $[2n, n]$-Decisional-QCRSD and $[3n, n]$-Decisional-QCRSD problems, OUROBOROS-R is IND-CPA in the Random Oracle Model.*
Best Known Attacks

- Combinatorial attacks: try to guess the support of the error or of the codeword. The best algorithm is GRS+ (Aragon et al. ISIT 2018). On average:

\[\mathcal{O} \left((nm)^3 q^{r \left\lceil \frac{km}{n} \right\rceil - m} \right) \]

- Quantum Speed Up: Grover’s algorithm directly applies to GRS+ \(\implies \) exponent divided by 2.
Examples of parameters

All the times are given in ms, performed on an Intel Core i7-4700HQ CPU running at 3.40GHz.

<table>
<thead>
<tr>
<th>Security</th>
<th>Key Size (bits)</th>
<th>Ciphertext Size (bits)</th>
<th>KeyGen Time (ms)</th>
<th>Encap Time (ms)</th>
<th>Decap Time (ms)</th>
<th>Probability of failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>5,408</td>
<td>10,816</td>
<td>0.18</td>
<td>0.29</td>
<td>0.53</td>
<td>$< 2^{-36}$</td>
</tr>
<tr>
<td>192</td>
<td>6,456</td>
<td>12,912</td>
<td>0.19</td>
<td>0.33</td>
<td>0.97</td>
<td>$< 2^{-36}$</td>
</tr>
<tr>
<td>256</td>
<td>8,896</td>
<td>17,792</td>
<td>0.24</td>
<td>0.40</td>
<td>1.38</td>
<td>$< 2^{-42}$</td>
</tr>
</tbody>
</table>
Advantages and Limitations

Advantages:
- Small key size
- Very fast encryption/decryption time
- Reduction to decoding a random (QC) code.
- Well understood decryption failure probability

Limitations:
- Longer ciphertext (compared to LRPC) because of reconciliation ($\times 2$).
- Slightly larger parameters because of security reduction compared to LRPC.
- RSD problem studied since 27 years.
Questions!