Fast Multiparty Threshold ECDSA with Fast
Trustless Setup

Rosario Gennaro Steven Goldfeder
City College of NY Cornell Tech

Digital Signature Algorithm (DSA)

Given To sign a message m:

* agroup G of order N * pickanonceks.t.1<k<g-1
* agenerator g * R=gk

* a private key x * s=kilm+xr)modg

Signature is (r,s)

ECDSA is DSA over an elliptic curve group

GJKR Threshold DSA

Includes multiplication of Shamir shares

R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Threshold DSS Signatures.
EUROCRYPT ‘96.

Shamir’s Secret Sharing (Shamir’79)

If you have a secret s
an integer modulo a prime g

Consider the polynomial F(x)=a,+a x+...+ax’
where a,=s

Give player P. the share s.=F(i)
t+1 players can recover the secret

t or less have no information about s
any value is consistent with their shares

Addition of shares is easy

If you have two secrets a,b shared via Shamir
a, with polynomial F(x) and shares a;
b, with polynomial G(x) and shares b,

Players can reconstruct c=a+b by
revealing c=a+b,
A point on the polynomial (F+G)(x)
still of degree t
no other information about ag,b is released

r=gk
s=km+ x-r) mod g

Problem: Multiplication

If a and b are shared on degree t polynomials

a x b will be shared on a degree 2t polynomial

=> Need 2t + 1 players to sign

BUT t + 1 corrupted players can compromise security!

Requires extra participants

Need 2t + 1 players to sign

BUT t + 1 corrupted players can compromise security

2-out-of-2 threshold not possible

Threshold optimality

Given a (t, n)-threshold signature scheme, obviously t + 1
honest players are necessary to generate signatures. We say
that a scheme is threshold-optimal if t + 1 honest players also
suffice.

Previous work

t-out-of-n: GGN16, BGG17

However it required a dealer to generate and share the secret key x to the players (in
practice)

2-out-of-2: MRO1, L17, D+18

Multiplicative-to-additive conversion (MtA)

/2

v T

&G;‘ d ‘s=a><b ‘ b

_ b’ = funC(Cl,Cz)

a’ = func(c,,c,)

a’+b'=z=axb=s

Additively Homomorphic Encryption

® An encryption scheme E such that if ¢, = E(fm,) and c,=E(m,) then
o there exists an operation @ such that
m ¢, @c,=E(m+m, mod N)

e Note that this means that if a is an integer we can also compute

o Efam,)=c, @P... Pc,=a &c,

e Example: Paillier’s encryption scheme where N is an RSA modulus.

Multiplicative-to-additive conversion (MtA -- Gilboa)

;/0
eﬁl‘ a s=axbmodq ‘ b
¢, - Ex(a) Cy e m
. ¢, _c,®b@m =E,(ab + m)
, _
a’ = D,(c,)
b’ =-m

a’+b'=(ab+m)+(-m)=axb=s

Paillier Modulus

We will choose the Paillier modulus N large enough so that
operations modulo N will not “wrap around” and will be consistent

to doing them over the integers.

However ...

e Ifg, b,mareinZ and N > g protocol will work
e Players can maliciously choose their values to be larger
o Protocol will fail, but failure may reveal information about the
honest players’ input
® Two options
O Expensive: Include a range proof. No additional assumptions
O Cheaper: No range proof. Assume that information leaked will
not help forging DSA signatures

GMW product ‘a=a1+a2+...+an Hb b,+b,+..+b
- - -
‘allbl‘ ‘aZIbZ‘ ‘a3,b3‘

P. engages in two (2) MtA protocols with every other party P,

GMW peruct ‘a=a1+a2+...+an Hb=b1+b2+...+bn

[2:. b, |

P’s shareis

ab. + Zj (OLij +B;)

Threshold ECDSA from MtA

Key generation

e Players distributedly generate Shamir shares of a secret key x

O Each player contributes randomness to x and distributes shares to all other
players

® Each players ends up with a key share x

® Everyone learns public keyy = g*

Computing R=g"

® Beaver’s trick

e Distributively generate shared random values k and y
O Every player has shares k. and y;

® Use MtA to get additive shares o, of 0 = ky

e Reveal § and g*

O via interpolation and interpolation in the exponent respectively
e Each playersetst=56"y,

o the t.interpolate to k1

Computing s=k*(m-+xr)

e Use MtA protocol on shares of k'and x

O End up with shares s, of s

Cannot publish s, until checking that the signature is correct

The problem

e Adversary might have not inputted correct values in the MtA protocols

e Shares of s are now incorrect

o Players could detect that by checking if the signature actually verifies or not
o But the incorrect share held by the good players may reveal information

e Solution: randomize the shares so that

o if they are correct the signature verifies
o if they are incorrect the shares of good players are mapped to random points

Distributed validity test

o Rs= g-m y-r
e Each player reveals R$' masked by g
o V. =Rsig
e V=g™y' ProdV, should be ¢'
e Players can check that via a distributed Diffie-Hellman
o Broadcast A=g"
m A=Prod A, =g
o Broadcast T, = Alland U, = V"
m Prod T, should be equal to Prod U, (both g'")
m pseudorandom values if test fails (under DDH)

Security Proof & Extensions

e Main proof in the paper is in the game-based definition of security
o lItis hard to forge DSA signatures even if controlling t players

e Simulation based proof is possible for our protocol if players prove knowledge

of their inputs to all MtA protocols
o does not have to be range proofs necessarily

e MTtA protocol is used as a black box

o can use any, including the OT based one by Gilboa in the malicious adversary version
presented earlier

e Open source implementation by KZen Networks
o https://github.com/KZen-networks/multi-party-ecdsa

