The Picnic Digital Signature Algorithm

NIST First PQC Standardization Conference
April 2018

Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig and Greg Zaverucha

. DTU
=. Microsoft AIT & ONVERSITY S /v TY

Grazm
> AARHUS UNIVERSITY

Overview

Security depends only on problems related to symmetric key primitives

Unique design, conservative assumptions
Secure hash function (ROM/QROM analysis implies all the usual properties: CR, PR, etc.)
Secure block cipher (key recovery given a single plaintext/ciphertext pair)

The core of Picnic is an efficient zero knowledge proof for binary circuits

Create a signature scheme using a non-interactive proof
Use the Fiat-Shamir transform or Unruh transform

Performance characteristics

Keys are small, signing and verification times are fast
Signatures are relatively large

Picnic Signatures

Key Generation:
Generate a random plaintext block p
Generate a random secret key sk
Compute € = LowMC(C(sk, p)
Picnic public key is pk = (¢, p), secret key is sk

Sign(sk, pk, m):
Prove knowledge of sk such that €= LowMC(sk, p)
Message m and public key pk are bound to the proof when computing the challenge
Picnic signature is the proof

Picnic Signatures

Key Generation:
Generate a random plaintext block p
Generate a random secret key sk
Compute €= LowMC(sk, p) * Must be hard to recover sk
Picnic public key is pk = (¢, p), secret key is sk

Sign(sk, pk, m):
Prove knowledge of sk such that €= LowMC(sk, p)
Message m and public key pk are bound to the proof when computing the challenge
Picnic signature is the proof < Must be zero-knowledge

Proof System

/KBoo: zero knowledge proofs for statements about circuits.

v, D L

Public circuit X3 L,
with AND and v - -

XOR gates ->.

Prover knows x; ... x,, such that the circuit evaluates to y; ... y,,,

| | | |

Hard to
. pk
Invert

l. Giacomelli, J. Madsen and C. Orlandi, ZKBoo: Faster Zero-Knowledge for Boolean Circuits. USENIX Security 2016.

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_giacomelli.pdf

Proof system

Picnic uses ZKB++, a variant optimized for short proofs
Built with a hash function and KDF (both SHAKE)

Non-interactive proofs

Fiat-Shamir transform gives ROM security
Unruh’s transform gives QROM security, 1.6x larger signatures

Proof size depends on

The security level; we use parallel repetition to achieve soundness
The number of AND gates in the circuit

The LowMC Block Cipher

LowMC is a block cipher introduced by Albrecht et al. at Eurocrypt

Designed for nontraditional block cipher applications, like MPC and FHE

Compared to more common primitives:
About 7x fewer than AES, and 30x fewer than SHA-256
Newer design, but we only need key recovery to be difficult

Highly parameterizable, some of our choices

Tradeoff between AND and XOR gates: balance signature size and signing time
Only one plaintext-ciphertext pair is revealed per key
Keysize = blocksize (128, 192 and 256 bits)

M. Albrecht, C. Rechberger, T. Schneider, T. Tiessen and M. Zohner. Ciphers for MPC and FHE. EUROCRYPT 2015.

https://eprint.iacr.org/2016/687

Parameter Sets

Parameter sets for the three AES security levels, L1, L3, L5

Each with different LowMC, SHAKE and # of parallel repetitions
Fiat-Shamir (FS) and Unruh (UR) variants

Performance: Key and Signature Size

Signature and key sizes (bytes)
m

Picnic-L1-FS 34,000
Picnic-L1-UR 32 16 53,929
Picnic-L3-FS 48 24 76,740
Picnic-L3-UR 48 24 121,813
Picnic-L5-FS 64 32 132,824

Picnic-L5-UR 64 32 209,474

Performance: Timings

Optimized Implementation (ms), Intel(R) Core(TM) i7-4790 CPU @
3.60GHz

Parameter Set | Keygen __Sign _____|Verify ____

Picnic-L1-FS 0.00 1.95 1.36
Picnic-L1-UR 0.00 2.64 1.91
Picnic-L3-FS 0.01 6.61 4.63
Picnic-L3-UR 0.01 8.84 6.29
Picnic-L5-FS 0.02 14.71 10.64

Picnic-L5-UR 0.02 18.67 13.60

TLS Experiments

Are there Challenges to USing Picnic in TLS? Ciphersuite Page Mean fetch Mean fetch
We added Picnic to the Open Quantum Safe library (OQS), the KEX, SIG Size ;llme (setcond;) ::m: (s:conzs)
OQS fork of OpenSSL and Apache web server S e oS neor

45B

Experiment: ECDHE-

0.470 0.299

ECDSA
Use Picnic-signed X.509 certificates certifying Picnic keys
L1-FS parameter set (not PQ) 100K 1.226 0.452
Use Picnic certificates to authenticate TLS 1.2 connections LWEFRODO- 45B 0.578 0.366
Fetch HTML files RSA
Performance, client-side latency: 100K 1335 0.518
For 45B files: increase of 1.4x to 1.7x LWEFRODO- 45B 0.984 0.513
For 100KB files: increase of 1.1x to 1.3x PICNIC
Challenges: 100K 1.733 0.594
TLS 1.2 has limit of 2!® — 1 bytes/signature: too short for our SIDH-RSA 45B 0.655 0.385
higher security parameter sets 100K 1370 0.541
SIDH-PICNIC 45B 1.084 0.523

100K 1.738 0.600

HSM Experiments

What it a CA wants to protect Picnic signing keys in a hardware
security module?

We experimented with the Utimaco SecurityServer Se50 LAN V4
Experiment:

Implement Picnic key generation and signing in an HSM. Ported our reference
implementation.

Generate self-signed root cert using new Picnic key pair
Receive certificate signing request for RSA key pair and issue X.509 certificate

Performance was acceptable and porting reference
implementation was straightforward

Highlights of Picnic

Unique design
Conservative assumptions
Efficient and tested in real world protocols

More information: microsoft.github.io/Picnic/

Spec and design documents, research paper from CCS 2017
Talks and related work (RWC 2018 talk)

Link to OQS/OpenSSL, code from our HSM demo
Implementations

https://microsoft.github.io/Picnic/
https://www.youtube.com/watch?v=_J9ESIy8D2o

