
Role-Based Access Control

Overview

user_sessions

(RH)
Role Hierarchy

session_roles

(UA)
User Assign­

ment

(PA)
Permission
Assignment

USERS OBS OPS

SESSIONS

ROLES

PRMS

SSD

DSD

Objective
 Establish a common vocabulary for

Role-Based Access Control for use
in SEPM

 Present a Framework for Role-
Based Access Control for both
Physical and Virtual Domains

 Discuss Various AC Models and
why RBAC is a must!!!!

- -

Think about this…

 “Although the fundamental concepts of roles are

common knowledge, the capability to formalize model
specifications needed to implement RBAC models is
beyond the knowledge base of existing staff in may
software companies”

 “The lack of knowledge and staff expertise in the area
of RBAC increases the uncertainty of both the
technical feasibility of developing successful RBAC-
enabled products and the develop cost and time
frame.”

The Economic Impact of Role Based Access Control

Access Controls Types

 Discretionary Access Control
 Mandatory Access Control
 Role-Based Access Control

Discretionary AC

 Restricts access to objects based

solely on the identity of users who

are trying to access them.

Individuals Resources
Application
Access List Server 1

Server 2

Server 3

Name Access
Tom Yes
John No
Cindy Yes

Mandatory AC
 MAC mechanisms assign a

security level to all information,
assign a security clearance to each
user, and ensure that all users only
have access to that data for which
they have a clearance.

Principle: Read Down Access
equal or less Clearance

Write Up Access
equal or higher Clearance

Better security than DAC

 Mandatory AC (cont)

Individuals Resources

Server 1

“Top Secret”

Server 2

“Secret”

Server 3

“Classified”

Role-Based AC

“Ideally, the [RBAC]
system is clearly
defined and agile,
making the addition
of new applications,
roles, and employees
as efficient as
possible”

 A user has access to an object based on
the assigned role.

 Roles are defined based on job
functions.

 Permissions are defined based on job
authority and responsibilities within a job
function.

 Operations on an object are invocated
based on the permissions.

 The object is concerned with the user’s
role and not the user.

Role-Based AC

Individuals Roles Resources

Role 1 Server 1

Server 2
 Role 2

Server 3
 Role 3

User’s change frequently, Roles don’t

Privilege
 Roles are engineered based on the

principle of least privileged .
 A role contains the minimum amount of

permissions to instantiate an object.
 A user is assigned to a role that allows

him or her to perform only what’s
required for that role.

 No single role is given more permission
than the same role for another user.

 Role-Based AC
Framework
 Core Components
 Constraining Components

 Hierarchical RBAC
General
 Limited

 Separation of Duty Relations
Static
Dynamic

Core Components

 Defines:
 USERS
 ROLES
OPERATIONS (ops)
OBJECTS (obs)
 User Assignments (ua)

 assigned_users

Core Components (cont)

 Permissions (prms)

Assigned Permissions
Object Permissions
Operation Permissions

 Sessions
User Sessions
Available Session Permissions
Session Roles

Constraint Components

 Role Hierarchies (rh)
General
 Limited

 Separation of Duties
 Static
 Dynamic

RBAC Transition

Most
Complex

Least Privileged
Separation of

Duties Models Hierarchies Constraints

RBAC0 No No

RBAC1 Yes No

RBAC2 No Yes

RBAC3 Yes Yes

RBAC3

Effort

RBAC Model

RBAC System and
Administrative Functional
Specification
 Administrative Operations

 Create, Delete, Maintain elements and
relations

 Administrative Reviews
 Query operations

 System Level Functions
 Creation of user sessions
 Role activation/deactivation
 Constraint enforcement
 Access Decision Calculation

user_sessions session_roles

(UA)
User Assign­

ment

(PA)
Permission
Assignment

USERS OBS OPS

SESSIONS

ROLES

PRMS

Core RBAC

USERS

Proces
s

Intelligent Agent

Person

ROLES
An organizational job function with a
clear definition of inherent responsibility
and authority (permissions).

Director Developer
Budget

Manager

Help Desk MTM relation between
Representative USERS & PRMS

OPS (operations)
An execution of an a program specific
function that’s invocated by a user.

•Database – Update Insert Append Delete

•Locks – Open Close
•Reports – Create View Print
•Applications - Read Write Execute

SQL

OBS (objects)
An entity that contains or receives
information, or has exhaustible system
resources.

•OS Files or Directories
•DB Columns, Rows, Tables, or Views

•Printer
•Disk Space
•Lock Mechanisms

RBAC will deal with
all the objects listed in
the permissions
assigned to roles.

UA (user assignment)
USERS set A user can be assigned ROLES set

The picture can't be displayed.

to one or more roles

Developer

A role can be assigned
to one or more users

Help Desk Rep
UA ⊆ USERSxROLES

UA (user assignment)
Mapping of role r onto a set of users

ROLES set USERS set
UA ⊆ USERSxROLES

User.F1
User.F2
User.F3
User.DB1
•View
•Update
•Append

permissions object

users assigned _ user : (r : ROLES) → 2

}),(|{)(_ UAruUSERS uruser assigned ∈∈=

User.DB1

assigned _ user (r) = {u ∈USERS | (u, r) ∈UA} User.DB1

PRMS (permissions)

The set of permissions that each

grant the approval to perform an

operation on a protected object.

User.DB1 User.F1
•View •Read
•Update •Write
•Append •Execute

permissions object permissions object

2(OPSxOBS)PRMS =

PA (prms assignment)
PRMS set ROLES set
 A prms can be

Create

PRMSxROLES PA ⊆

The picture can't be displayed.

The picture can't be displayed.

assigned to one or
more roles

Admin.DB1

A role can be assigned
to one or more prms

Delete

Drop

View
Update
Append

User.DB1

SQL

PA (prms assignment)
The picture can't be displayed.Mapping of role r onto a set of permissions

ROLES set PRMS set
UA ⊆ USERSxROLES

•ReadUser.F1
•Write

User.F2 •Execute

User.F3 •View
•UpdateAdmin.DB1 •Append
•Create
•Drop

assigned _ permissions(r : ROLES) → 2PRMS

assigned _ permissions(r) = {p ∈ PRMS | (p, r) ∈ PA}

PA (prms assignment)

Mapping of operations to permissions

The picture can't be displayed.

OPS set PRMS set
UA ⊆ USERSxROLESpublic int read(byteBuffer dst)
throws IOException READ

Inherited methods from java.nio.channls

close()

isOpen()

Gives the set of ops
associated with the
permission

Ob(p : PRMS) → {op ⊆ OPS)

PA (prms assignment)

Mapping of permissions to objects

PRMS set Objects

•Open
•Close

Gives the set of
objects associated BLD1.door2
with the prms

•View
•Update
•Append
•Create
•Drop

SQL

DB1.table1
Ob(p : PRMS) → {ob ⊆ OBS)

SESSIONS

The set of sessions that each user invokes.

USER SESSION

SQL

DB1.table1

FIN1.report1

APP1.desktop

SESSIONS

The mapping of user u onto a set of sessions.

USERS SESSION

ROLES session _ roles (s : SESSIONS) → 2

session _ roles (si) ⊆ {r ∈ ROLES | (session _ users (si), r ∈UA)

SQL

User2.FIN1.report1.session
USER1

User2.DB1.table1.session

USER2
User2.APP1.desktop.session

SESSIONS user _ sessions (u :USERS) → 2

SESSIONS

The mapping of session s onto a set of roles

SESSION ROLES
ROLES session _ roles (s : SESSIONS) → 2

avail _ session _ persm (s : SESSIONS) → 2PRMS
session _ roles (si) ⊆ {r ∈ ROLES | (session _ users (si), r ∈UA)

SQL
•Admin
•User
•Guest

DB1.table1.session

ROLES session _ roles (s : SESSIONS) → 2

session _ roles (si) ⊆ {r ∈ ROLES | (session _ users (si), r ∈UA}

SESSIONS

Permissions available to a user in a session.

ROLE PRMS SESSION

•View
•Update
•Append
•Create

SQL

•Drop
DB1.table1.session DB1.ADMIN

avail _ session _ persm (s : SESSIONS) → 2PRMS

assigned _ permissions(r)
r∈session _ roles (s)

(RH)
Role Hierarchy

user_sessions session_roles

(UA)
User Assign­

ment

(PA)
Permission
Assignment

USERS OBS OPS

SESSIONS

ROLES

PRMS

Hierarchal RBAC

Tree Hierarchies

Production
Engineer 1

Quality
Engineer 1

Production
Engineer 2

Quality
Engineer 2

Engineer 1 Engineer 2

Director

Project Lead 1 Project Lead 2

Engineering Dept

Production Quality Production Quality

Engineer 1 Engineer 1 Engineer 2 Engineer 2

Lattice Hierarchy

Director

Project Lead 1 Project Lead 2

Production Quality Production Quality

Engineer 1 Engineer 1 Engineer 2 Engineer 2

Engineer 1 Engineer 2

Engineering Dept

RH (Role Hierarchies)

 Natural means of structuring roles to

reflect organizational lines of authority
and responsibilities

 General and Limited
 Define the inheritance relation among

roles
i.e. r1 inherits r2

User Guest
r-w-h -r-

RH ⊆ ROLESxROLES

General RH

Guest Role Set

Power User Role Set

User Role Set

Admin Role Set

Support Multiple
Inheritance

i.e. r1 inherits r2
Only if all permissions of r1

are also permissions of r2

Only if all users of r1 are
also users of r2 User Guest

r-w-h -r­

r r ⇒ authorized _ permissions(r) ⊆ authorized _ permissions(r)
^ authorized _ users (r1) ⊆ authorized _ users (r2)
1 2 2 1

authorized users

Mapping of a role onto a set of users in
the presence of a role hierarchy

ROLES set First Tier USERS set

Admin.DB1
User.DB1
User.DB1
User.DB1 User.DB1 •View
•Update
•Append assigned _ user (r) =)(|{ USERS u ∈ , ru ∈UA}

permissions object

authorized _ users (r) = {u ∈USERS | r 'r(u, r ') ∈UA} User.DB1

authorized permissions

Mapping of a role onto a set of permissions
in the presence of a role hierarchy

ROLES set PRMS set
USERSxROLESUA ⊆

User.DB1 •View

User.DB1
User.DB1
Admin.DB1

•Update
•Append

•Create
•Drop

SQL

authorized _ permissions(r : ROLES) → 2PRMS

authorized _ permissions(r) = {p ∈ PRMS | r 'r, (p, r ') ∈ PA

Limited RH
A restriction on the immediate
descendants of the general role
hierarchy

Role2
Role2 inherits from Role1

Role3
Role3 does not inherit from Role1
Role1 or Role2

∀r, r , r ∈ ROLES , rr ^ rr ⇒ r = r1 2 1 2 1 2

Limited RH (cont)

Fred
 Curt
 Tuan

Tom

AcctRec

AcctRecSpv Tammy

Cashier

CashierSpv Sally

Auditing

Joe Frank

Billing

BillingSpv

Accounting

Accounting Role

Notice that Frank has two roles: Billing and Cashier
This requires the union of two distinct roles and prevents
Frank from being a node to others

user_sessions

(RH)
Role Hierarchy

session_roles

(UA)
User Assign­

ment

(PA)
Permission
Assignment

USERS OBS OPS

SESSIONS

ROLES

PRMS

SSD

DSD

Constrained RBAC

Separation of Duties
 Enforces conflict of interest policies

employed to prevent users from
exceeding a reasonable level of authority
for their position.

 Ensures that failures of omission or
commission within an organization can
be caused only as a result of collusion
among individuals.

 Two Types:
 Static Separation of Duties (SSD)
 Dynamic Separation of Duties (DSD)

SSD

 SSD places restrictions on the set of

roles and in particular on their ability to
form UA relations.

 No user is assigned to n or more roles
from the same role set, where n or more
roles conflict with each other.

 A user may be in one role, but not in
another—mutually exclusive.

 Prevents a person from submitting and
approving their own request.

ROLES SSD ⊆ (2 xN)

∀(rs, n) ∈ SSD,∀t ⊆ rs :| t |≥ n ⇒  assigned _ users (r) =∅
r∈t

SSD in Presence of RH

 A constraint on the authorized users of the
roles that have an SSD relation.

 Based on the authorized users rather than
assigned users.

 Ensures that inheritance does not
undermine SSD policies.

 Reduce the number of potential permissions
that can be made available to a user by
placing constraints on the users that can be
assigned to a set of roles.

∀(rs, n) ∈ SSD,∀t ⊆ rs :| t |≥ n ⇒  authorized _ users (r) =∅
r∈t

DSD

 Places constraints on the users that can be

assigned to a set of roles, thereby reducing
the number of potential prms that can be
made available to a user.

 Constraints are across or within a user’s
session.

 No user may activate n or more roles from
the roles set in each user session.

 Timely Revocation of Trust ensures that
prms do not persist beyond the time that
they are required for performance of duty.

ROLESxN DSD ⊆ (2)
ROLES ∀rs ∈ 2 , n ∈ N , (rs, n) ∈ DSD ⇒ n ≥ 2^| rs |≥ n, and

ROLES	 ROLES ∀s ∈ SESSIONS ,∀rs ∈ 2 ,∀role _ subset ∈ 2 ,∀n ∈ N , (rs, n) ∈ DSD , role _ subset ⊆ rs, role _ subset ⊆ session _ role (s) ⇒| role _ subset |< n

DSD (cont)
Roles

inherits

Reduce Cashier Supervisor COI

Closes Cashier Role session
Close Cash Drawer

Supervisor Opens Supv Role session Cashier
Open Cash Drawer

Accounting Error Correct Error

Where we are going….

Current Environment
 Legacy Applications use ACL
 Roles are application specific
 All roles do not follow

organizational functions
 Developers and PMs need to think

about App roles in their design
phase

 Jan 16th Apps will use current
mechanism

In Progress

 Developed and Demo Etrust AD and
LDAP prototype

 Downloaded and installed NIST Solaris
RBAC prototype application

 Coding an XML prototype RBAC
database and application

 Exploring CA Identity Manager
 Working on modifying current SEAT

process to take advantage of Access
Control Groups, then RBAC

 Working on modifying web-based apps
to use RBAC1 implementation

Near Future
 Roles Analysis for new apps
 LPI, K-Reg, and new apps will use

RBAC model
 Legacy Apps will continue current AC

model
 SEAT will have to support both AC

models
 Proposed NIST Standard for RBAC will

become a Fed Gov Standard

Future
 All Apps are migrated to a RBAC2

 Roles are centrally managed, but
with distributed delegated role
assignments and user
management

 Expert System module automates
most tasks required for central role
management

Final Thoughts

 RBAC is a phased approach with

increasing level of effort.
 Role engineering is essential in any

RBAC rollout.
 RBAC has an up front and steep

economic impact, but decreases with
time.

 Implementing RBAC requires yet another
modification to legacy application.

 SEAT RBAC may not be compatible with
TFWeb or any other implementation that
uses COTS for their solution. Apps
would have to be modified yet again to
support this change.

Final Thoughts (cont)

 TPIS is just the user component to a

RBAC system.
 A persons cyberID is a set of roles

granted him or her access to an object.
 RBAC will free up application owners

from the task of account approval.
 Our RBAC still allows for DAC and MAC.
 This RBAC model is applicable for both

the Virtual and Physical access policy
development.

SEAT is like Sky Diving….

You prepare and get ready for the inevitable..

 ….the time comes to execute….

…you try to stabilize…

 …and hope that everything works at pull time…

…and if all works well, you sail into the sunset.

Knowing that you have your reserve on your back.

QUESTIONS…COMMENTS??

	Role-Based Access Control
	Objective
	Think about this…
	Access Controls Types
	Discretionary AC
	Mandatory AC
	Mandatory AC (cont)
	Role-Based AC
	Role-Based AC
	Privilege	
	Role-Based AC Framework
	Core Components
	Core Components (cont)
	Constraint Components
	RBAC Transition
	RBAC System and Administrative Functional Specification
	Slide Number 17
	USERS
	ROLES
	OPS (operations)
	OBS (objects)
	UA (user assignment)
	UA (user assignment)
	PRMS (permissions)
	PA (prms assignment)
	PA (prms assignment)
	PA (prms assignment)
	Slide Number 28
	SESSIONS
	SESSIONS
	SESSIONS
	SESSIONS
	Slide Number 33
	Tree Hierarchies
	Lattice Hierarchy
	RH (Role Hierarchies)
	General RH
	authorized users
	authorized permissions
	Limited RH
	Limited RH (cont)
	Slide Number 42
	Separation of Duties
	SSD
	SSD in Presence of RH
	DSD
	DSD (cont)
	Where we are going….
	Current Environment
	In Progress
	Near Future
	Future
	Final Thoughts	
	Final Thoughts (cont)
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60

