(lntel) .
experience
what’s inside”

The Whole is Greater...

Sugumar Govindarajan
Security Architect, Intel Server BIOS

John Loucaides
Security Researcher, Intel Product Security Incident Response Team

Contributions from Aaron Frinzell, Intel Server BIOS

Legal information

Intel technologies, features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies
depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of
any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User
and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fithess for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice.
Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current
characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel vPro, Look Inside., the Look Inside. logo, Intel Xeon Phi, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

© 2015 Intel Corporation.

intel‘ .

Firmware

Let’s set the stage

Where are we (system firmware)?

4 VM VM
App App App App
L oS J L 0s
> BIOS & OS/VMM share access,
! but not trust

VMM / Hypervisor ;g UEFI + Pl SMM

Privilege++

Hypervisor can

grant VM direct

Peripherals &

)

Platform

Firmware]

A specific Peripheral may have

1
1
1
1
I
1
1
1
1
| hardware access
1
1
T
1
1
1
1
1
1

its own processor, and its own

———————————————————————————— firmware, which is undetectable
DMA by host CPU/OS.

What is UEFI?

UEFI Pl Scope - Green “H”
A

Pre-boot
Tools

UEFI Specification

Platform
Drivers

Silicon
Component
Modules

Hardware

[PE!/DXE Pl Foundation

[1 Modular components

Human User

GUI

Application

Libraries

Drivers

Network

0S

Hardware

—_

Full system stack
(user -> hardware)

UEFI 2.4 specifies how firmware boots OS loader

UEF/I’s Platform Initialization (PI) 1.3 Architecture
specifies how Driver Execution Environment
(DXE) Drivers and Pre-EFI Initialization (PEI)
Modules (PEIMS) initialize Sl and the platform

DXE is preferred UEFI Implementation

PEIMs, UEFI and DXE drivers implement
networking, Update, other security features

What's in UEFI

Mostly written in C.
High code re-use.

CPU Architecture
independent. Platform
design flexibility.

Empha5|s on
Specifications.

Standards compliance.

-
2+D= ||
Secure boot solves
“trust” related system
integration challenges.

4

Better platform

scaling. For e.g. removes
shadow ROM limits.

/ /5/ // / ;

é’-ﬁﬂ/ﬁ/ﬁéfﬁ

Pre-boot Networking.

Ipv4, Ipv6, PXE,
VLAN, iSCSI etc.

Storage.
GPT removes 2.2 TB
MBR restriction.

UEFI shell improves
pre-boot testing &
diagnostics experience.

UEFI [Compliant] Firmware

CPU Reset

\l SEC S-CRTM; Init caches/MTRRs; Cache-as-RAM (NEM); Recovery; TPM Init

; S-CRTM: Measure DXE/BDS
Pre-EF Init Early CPU/PCH Init
(PEI) Memory (DIMMs, DRAM) Init, SMM Init
. Continue initialization of platform & devices
Driver Exec | Enum Fv, dispatch drivers (network, 1/0, service..)
Env (DXE) Produce Boot and Runtime Services
\ Boot Dev Boot Manager (Select Boot Device)
ACPI, UEFI SystemTable, SMBIOS tabl EFI Shell/Apps; OS Boot Loader(s
! ysiemiable, ave Select (BDS) PP (©)

ExitBootServices. Minimal UEFI services (Variam" Runtime / OS D

The Challenge

No one expects the BIOS Inquisition!!

The hole is also greater... than expected...

« 37 unique publicly disclosed issues in the last ~2 years (by only a handful of
researchers)

« Multiple of these are really classes of issues with many instances in
affected firmware products (SMI input pointers, SMI “call-outs”, insecure use
of UEFI variables, etc.)

« Many issues affect multiple vendors at once (S3 boot script, BIOS write
protections, UEFI variables, SMI call-outs, SMI input pointers)

* Issues may need to be checked separately in every product

* And updating firmware is not easy

Start with a complicated enabling process...

Intel IBV ODM OEM
Design/ Design/ Design/ Design/
Validation Validation Validation Validation

End User
Firmware
update

OEM Field Platform

Manufacturing

Refurbish

“The Long and Winding Road” (to your system)

tianocore.org

Reference Tree

>

>
>
New product

Existing product

OEM BIOS

% End users >
., \ Updﬁt_i_r]g]_’-_’ _______ Commercial product in the field >
‘e, Consumer product in the field
'... P ‘}
\ IBV)
2 ODM BIOS >
Al ODMs updating? New
Intel = o product
IOBI\E/M_ Existing ODM
ODM_ IEEEEEEEEEEEER)

Time

Some (quick) Examples

1. S3 Boot Script (Sleep/Resume) Issues

2. SMI Handler Call-Outs

3. Bad Pointer Input SMI Vulnerabilities

intel‘ . 12

Do BIOS Attacks Require Kernel Privileges?

OS Driver

UEFI OS Loader -

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

Hardware

A matter of finding
legitimate signed kernel
driver which can be used
on behalf of user-mode
exploit as a confused
deputy.

RWEverything driver

signed for 64bit Windows
(co-discovered with other
researchers)

The Sum of the Parts...

A quick summary of many ongoing efforts to improve system firmware security...

14

Parts to Consider...

» Finding Issues
— Vulnerability Research
— Security Development Lifecycle activities
— Testing (CHIPSEC and more...)

= Hardening
— Development processes and practices
— Threat Model and Mitigations

= Community & Ecosystem Engagement
— UEFI Security Response Team
— Intel and Tianocore Advisories

intel‘ . 15

Finding Issues

Intel is looking for (and finding) issues...

2013
= Secure Boot Bypass Research (BH 2013)
2014

Tianocore issues (see http://tianocore.org/security)

Multiple Secure Boot Bypasses (independent discovery by other researchers, co-presented at CanSecWest 2014)

Summary of BIOS Attacks (DEFCON 22, Ekoparty 10, Ruxcon 2014)

S3 Boot Script Vulnerabilities (independent discovery by external researchers, presented by Intel at Recon 2015)
2015
= SMM Bad Pointer Input Vulnerabilities (CanSecWest 2015)

= LTE Modem Security (DEECON 23)
= Attacking VMMs through Firmware (BH 2015)

intel‘ . 17

https://cansecwest.com/slides/2013/Evil Maid Just Got Angrier.pdf
http://tianocore.org/security
https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf
https://www.defcon.org/images/defcon-22/dc-22-presentations/Bulygin-Bazhaniul-Furtak-Loucaides/DEFCON-22-Bulygin-Bazhaniul-Furtak-Loucaides-Summary-of-attacks-against-BIOS-UPDATED.pdf
http://www.ekoparty.org/charlas-2014.php?l=en&a=2013&c=cyan&m=142
https://ruxcon.org.au/speakers/#John Loucaides
http://www.intelsecurity.com/advanced-threat-research/content/ANewClassOfVulnInSMIHandlers_csw2015.pdf
http://www.intelsecurity.com/advanced-threat-research/content/ANewClassOfVulnInSMIHandlers_csw2015.pdf
http://www.intelsecurity.com/advanced-threat-research/content/Intel_DC23_SPLTE.pdf
http://www.intelsecurity.com/advanced-threat-research/content/AttackingHypervisorsViaFirmware_bhusa15_dc23.pdf

CHIPSEC

22 a
220 D,

Platform \

a%ecurity Research j / Validation /
>)
229
Test
New Modules End-user
Attacks for Risk
OEMs/IBVs

Raising the Bar for Platform Security

Chipsec Util

common

HAL — Hardware Abstraction Layer

spi cmos | smbus | physmem uefi

OSHelper

Linux Helper Windows Helper UEFI Helper

Linux Driver Windows Driver EFI Native Code

*Other names and brands may be claimed as the property of others.

chipsec util
chipsec util
chipsec util
chipsec util
chipsec util
chipsec util
chipsec util
chipsec util
chipsec util
chipsec util
chipsec util
chipsec util
chipsec util
chipsec util
chipsec util
chipsec util
chipsec util
chipsec util

Use CHIPSEC for access HW resources £\

msr 0x200 ..'
mem 0x0 0x41E 0x20 II‘ ‘
pci enumerate

pci 0x0 Ox1lF 0x0 O0xDC byte .i'

io 0x61 byte

mmcfg 0 Oxl1F O O0xDC 1 Ox1
mmio list

cmos dump

ucode id

smi 0x01 OxFF

idt O

cpuid 1

spi info

spi read 0x700000 0x100000 bios.bin
decode spi.bin

uefi var-list

spd dump

acpi list

(@)

Known Threats and CHIPSEC modules i)

Chipsec Module Publication
Modules/common/ bios_ts.py “BIOS Boot Hijacking and VMware Vulnerabilities Digging” - Sun Bing

Modules/common/ bios_kbrd_buffer.py DEFCON 16: “Bypassing Pre-boot Authentication Passwords by Instrumenting the BIOS
Keyboard Buffer” — Jonathan Brossard

Modules/common/bios_smi.py “Setup for Failure: Defeating SecureBoot” — Corey Kallenberg, Xeno Kovah, John Butterworth,
Sam Cornwell

Modules/remap Preventing & Detecting Xen Hypervisor Subversions — Joanna Rutkowska & Rafal Wojtczuk
Modules/smm_dma Programmed I/O accesses: a threat to Virtual Machine Monitors? — Lioc Duflot & Laurent Absil

Modules/common/ bios_wp.py Black Hat USA 2013 “BIOS Security” — MITRE (Kovah, Butterworth, Kallenberg)

NoSuchCon 2013 “BIOS Chronomancy: Fixing the Static Root of Trust for Measurement” —
MITRE (Kovah, Butterworth, Kallenberg)

Modules/common/ smm.py CanSecWest 2006 “Security Issues Related to Pentium System Management Mode” — Duflot

Parsing of SPI descriptor access permissions is implemented in “ich_descriptors_tool” which is
part of open source flashrom.

Modules/common/ smrr.py “Attacking SMM Memory via Intel CPU Cache Poisoning” — ITL (Rutkowska, Wojtczuk)

_ “Getting into the SMRAM: SMM Reloaded” — Duflot, Levillain, Morin, Grumelard

FLOCKDN is in flashrom and MITRE's Copernicus

UEFI 2.4 spec Section 28

UEFI 2.4 spec Section 28

Y leTe (V]IS Xl alna e VIS ITE (LSRN NS o [eToW VAR UEF| spec — Table 11 “Global Variables”
Modules/tools/smm/smm_ptr.py “A New Class of Vulnerability in SMI Handlers of BIOS/UEFI Firmware” Intel ATR

intel‘ .

http://powerofcommunity.net/poc2007/sunbing.pdf
http://www.slideshare.net/endrazine/defcon-16-bypassing-preboot-authentication-passwords-by-instrumenting-the-bios-keyboard-buffer-practical-low-level-attacks-against-x86-preboot-authentication-software
http://syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lti/pacsec2007-duflot-papier.pdf
https://www.blackhat.com/us-13/briefings.html#Butterworth
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lti/cansecwest2006-duflot.pdf
http://www.flashrom.org/
http://www.invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://cansecwest.com/csw09/csw09-duflot.pdf
file:///C:/Users/jjloucai/Projects/SVN/chipsec/INTERNAL/flashrom.org
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://uefi.org/
http://uefi.org/
http://uefi.org/
https://cansecwest.com/slides/2015/A New Class of Vulnin SMI - Andrew Furtak.pdf

Some (quick) Examples

Check BIOS Write Protection

S3 Boot Script (Sleep/Resume) Issues

Bad Pointer Input SMI Vulnerabilities

intel‘ . 22

Symbolic Execution for BIOS Security

Symbolic execution for BIOS security’
Presented at WOOT'15

Oleksandr Bazhaniuk, John Loucaides, Lee Rosenbaum, Mark R. Tuttle, Vincent Zimmer”
Intel Corporation
May 25, 2015

Symbolic execution for code coverage and bug hunting
f(x,y)

— Coverage: minimal test cases inducing maximal code coverage
— Bugs: test cases inducing common program vulnerabilities

intel‘ . 23

https://www.usenix.org/conference/woot15/workshop-program/presentation/bazhaniuk

Use Open Source HW, SW and Tools

HW: Minnow Board MAX Open hardware platform

64-bit Intel® Atom™ SoC E38xx Series
http://firmware.intel.com/projects

SW: Minnow Board MAX UEFI Open Source (EDKII project)
http://tianocore.sourceforge.net/wiki/EDK2
Builds using Microsoft Visual Studios or GNU C Compiler

Tools: S2E
http://s2e.epfl.ch/

http://firmware.intel.com/projects
http://tianocore.sourceforge.net/wiki/EDK2
http://s2e.epfl.ch/
http://www.tianocore.org/
http://www.tianocore.org/

S2E on SMRAM Image

Boot Dump Run S2E Replay
on board to disk on QEMU on board
Test Code
. — > 7 ->
D{/Ialn 0 cases D{qaln 0 Coverage
} }
| Error
Messages

SMRAM —’-_ SMRAM SMRAM

v
SmmMemoryChecker: address Oxffffffff8172eef4 out of range at pc 0x7b3ec435

intel‘ .

Hardening

Development Process

Architecture Design
* Threat Model » Design Reviews

» Security Assets,
Threats, Objectives,
and Requirements

Implementation
» Code Review

« Static Analysis
» Test Plan

Deployment

* Survivability Plan
* Incident Response

intel‘ . 27

Security VT 5-point Agenda

1. Incident Response
2. Security Requirements
» Features, technologies, defining secure configuration

3. Secure Design
= Automate discovery of code-of-concern using Static Analysis Tools

4. Secure Code
= Custom checkers, go beyond standard plug-ins

5. Security Validation
= (Create test content
= Test coverage metrics

intel‘ . 28

Know Your Deliverable

! Integrated :
i Option —| i
El ROMs SMBIOS ACPI ;
c Table Table |
g | ~ — — i
3 PPM
| ACM |
Setup
Data
ME BMC
b 1 NM 1PMI |
N L
o
o :
f= I
[1-]
I ', RN NN INNNRE. T TR IR i~ L
@ Intel Components __| Intel Signed & Trusted Components __ 3™ Party Option ROM integrated in to BIOS
{0 34 Partyor Non-scope ([l HW entrusted Intel components (Legal Contract in place with Vendor)

intel‘ . 29

Twist the Tools, Sync with Process

Static Analysis into Continuous Integration
Add Custom Checkers
Make static analysis do secure design analysis
Doxygen tags
Stay away from project management
— Just feed the issues
— Impact projects metrics
Define phases of quality goals
Define security issues closure as milestone exit criteria

intel‘ . 30

Hardware Security Testability Interface

Initially...
« Mechanism to help avoid misconfiguration of Security Features

* Provide greater assurance of the Security configuration on all deployed
platforms - Even after configuration changes by IT and/or end-users

 Programmatic method for an Operating System to query security
configuration

Eventually...

« Establish trust between platform, the Intel-provided test module, and the
result published for the Operating System

intel‘ . 31

HSTI Solution Overview

Collaboratively defined API released
externally by Microsoft

= Built upon the UEFI 2.4 Adapter
Information Protocol

= https://msdn.microsoft.com/en-
us/library/windows/hardware/dn879006.

aSpPXx

= Defined a variety of Test Categories to
be implemented by either the Silicon
Vendor, IBV, or OEM

H

<

Hardware Rooted Boot Integrity
Boot Firmware Media Protection
Signed Firmware Update

Measured Boot Enforcement
Integrated Device DMA Protection
Debug Mode Disabled Verification
Secure CPU Configuration

Secure System Agent Configuration
Secure Memory Configuration

1
11
IBV/IOEM

o

Secure Integrated Graphics Configuration

Secure /O Configuration

=

Firmware Trust Continuation Crypto Strength

Test Key Verification

Firmware Version Rollback Protection
SecureBoot Bypass Checking
External Device DMA Protection

MOR Support

intel‘ . 32

https://msdn.microsoft.com/en-us/library/windows/hardware/dn879006.aspx

DMA Protection

DMA/GFx Aperture Attacks Against SMRAM

* SMRAM has to be protected from DMA Attack

* Protection from inbound DMA access is guaranteed by
programming TSEG range

* When BIOS doesn’t lock down TSEG range configuration,
malware can move TSEG outside of where actual SMRAM is

» Then program one of DMA capable devices (e.g. GPU device)
or Graphics Aperture to access SMRAM

* Programmed |I/O accesses: a threat to Virtual Machine
Monitors?

» System Management Mode Design and Security Issues

* BIOS has to lock down configuration required to define range
protecting SMRAM from inbound DMA access (e.g. TSEG
range)

chipsec main --module smm_dma

Software Access to SMRAM:

4GB

! -
*

CPU software
CPU access to SMRAM
is blocked by

DMA Access to SMRAM:

DMA access to
due to TSEG
covering SMRAM

= [o« TN

DMA Protection of SMRAM — Client

3.1.36 TSEGMB—TSEG Memory Base
This register contains the base address of TSEG DRAM memory. BIOS determines the
base of TSEG memory which must be at or below Graphics Base of GTT Stolen
Memory (PCI Device 0 Offset B4 bits 31:20). NOTE: BIOS must program TSEGMB to a
8MB naturally aligned boundary.
B/D/F/Type: 0/0/0/CFG Access: RW_KL;
RW_L
Size: 32 Default Value: 000000000 Address Offset: B8h
Bit Ranga Acronym Description Default Access
31:20 TSEGME This register contains the base address of TSEG DRAM 000hR RW_L
memory. BIOS determines the base of TSEG memary which
must be at or below Graphics Base of GTT Stolen Memory
{PCI Device O Offset B4 bits 31:20). BIOS must program
the walue of TSEGMB to be the same as BGSM when TSEG
is disabled.
19:1 RSWD Reserved. Qo000hR RO
1] LOCK This bit will lock all writeable settings in this register, 0h RW_EKL

including itself.

intel‘ . 37

DMA Access to SMRAM:

DMA access to
SMRAM is blocked
due to TSEG
covering SMRAM

4GB

Gfx
Base
SMRAM “

TSEGMB

Servers are People (computers) too ©

Architectural differences

= Memory

= Multi-processor

Register implementation differences

Feature support differences

Mitigation differences

DMA Access to SMRAM:

DMA access to
SMRAM is blocked
due to TSEG
covering SMRAM

4GB

TSEG.Limit
SMRAM X m

TSEG Base

DMA Protection of SMRAM — Server

tseg
Type: CFG PortID: N/A
Bus: 0 Device: 5 Function: 0

Offset: Oxa8

Bit Attr Default Description

63:52 RW_LB Ox0 lirmit:
Indicates the limit address which is aligned to a 1MB boundary.

Any access to falls within TSEG.BASE[31:20] <= Addr[31:20] <=
TSEG.LIMIT[31:20] is considered to target the Tseg region and 11O aborts it.

Note that address bits 19:0 are ignored and not compared. The result is that
BASE[19:0] is effectively 00000h and LIMIT is effectively FFFFFh.

Setting the TSEG.BASE greater than the limit, disable this region.

31:20 RW_LB Oxfeld base:

Indicates the base address which is aligned to a 1MB boundary. Bits [31:20]
corresponds to A[31:20] address bits.

intel‘ .

GENPROTRANGE

TSEG Protects SMRAM (along with SMRR)...
Generic Protected Memory Range

Using GENPROTRANGE, BIOS can protect other address ranges.
= Base

= Limit

= Base > Limit = disabled

GENPROTRANGE Base and Limit

Bit

Attr

Default

Description

50:16

RW_LB

0x0

limit_address:

[50:16] of generic memory address range that needs to be protected from
inbound dma accesses. The protected memory range can be anywhere in the
memory space addressable by the processor. Addresses that fall in this range
i.e. GenProtRange.Base[63:16] <= Address [63:16] <= GenProtRange.
Limit [63:16], are completer aborted by I10.

Setting the Protected range base address greater than the limit address
disables the protected memory region.

Note that this range is orthogonal to Intel VT-d spec defined protected
address range. This register is programmed once at boot time and does not
change after that, including any guiesce flows.

This region is expected to be used to protect against PAM region accesses
inbound, but could also be used for other purposes, if needed.

Bit

Attr

Default

Description

50:16

RW_LB

Ox 7 ffffffff

base_address:

[50:16] of generic memory address range that needs to be protected from
inbound dma accesses. The protected memory range can be anywhere in the
memory space addressable by the processor. Addresses that fall in this range
i.e. GenProtRange.Base[63:16] <= Address [63:16] <= GenProtRange.Limit
[63:16], are completer aborted by II0.

Setting the Protected range base address greater than the limit address
disables the protected memory region.

Note that this range is orthogonal to Intel VT-d spec defined protected
address range. This register is programmed once at boot time and does not
change after that, including any quiesce flows.

This region is expected to be used to protect against PAM region accesses
inbound, but could also be used for other purposes, if needed.

DMA Access to SMRAM:

Genprotrange[0].Limit

Genprotrange[0].Base

Genprotrange[1].Limit

Genprotrange[l].Base

Community & Ecosystem
Engagement

After all, we're in this together...

Response Process

1. Issue Discovery

> secure@intel.com security@uefi.org (other security teams)

2. Investigation and Disposition of Impacts
» PSIRT BIOS Core, representing BIOS leads in every segment
3. Mitigation Development and Validation
4. Non-public Communication for Mitigation Development/Deployment

> Technical Advisories

» USRT Coordination (http://uefi.org/security)

5. Public Communication

> https://security-center.intel.com

> http://tianocore.org/security

mailto:secure@intel.com
mailto:security@uefi.org
http://uefi.org/security
https://security-center.intel.com/
http://tianocore.org/security

CHIPSEC Information

On the web: https://github.com/chipsec/chipsec

Email List; https://lists.01.org/mailman/listinfo/chipsec

= Gaining activity/support from community

= External interestin
— Deployable drivers
— Supporting other platforms/architectures
— Greater coverage of issues
— Increased user-friendliness

Contact: chipsec@intel.com

intel‘ . 47

https://github.com/chipsec/chipsec
https://lists.01.org/mailman/listinfo/chipsec
mailto:chipsec@intel.com

Putting it together...

Finding Hardening
Issues

*Research *Process
«Testing *Tools

Community

*Advisories
*USRT

*People

Client
Server
SoC

Open Source

Other Firmware Developers

Finding
Issues
Hardening

Actionable Work

Putting it together...

Finding
Issues

Finding Hardening
Issues

Community

*Advisories
*USRT

Hardening

*People
*Research *Process
«Testing *Tools

Cher.
| I 0 J J o~ s

Sever

Actionable Work

Othci Firmware Developers

How this applies to YOU...

= Look for Issues and Mitigations
— Vulnerability Research

— Platform-specific assessments
— Next level of detail for concepts like “non-bypassible” in 800-147
— Could include testing such as with the CHIPSEC Framework

= Harden the Implementation
— Consider both development practices and response/update
— Consider technologies like secure boot,

= Engage the Community
— UEFI Forum (USRT & USST)

intel‘ .)

https://github.com/chipsec/chipsec
uefi.org/security

(lntel) |
experience
what'’s inside”

Please visit Intel in the Show Floor Area in Booth 100

$3 Boot Script

Example 1

Why “S3 Resume Boot Script™?

To speed up S3 resume, required HW configuration actions are written to an “S3

Resume Boot Script” by DXE drivers instead of running all configuration actions
normally performed during boot

— MNormal Boat —w SEC

—— 53 Rasuma — SEC

r

FEl

PEl
[S3-awara
PEIM to restora
PEI phasa
configuration)

¥

DXE

¥

BDS —— 05 load —»

Save

Boot Script
Table in ACPI

NWVS

Execute

¥

Boot Script
PEIM to
rastore DXE
phase
configuration

05 waking vector ——»

S3 Boot Script is a Sequence of Platform Dependent
Opcodes

00 00 00 00 21 00 00 00 @@ @@ of 01 00 00 00 00
00 00 cO fe 00 00 00 00
B8 o1 oo oo 0024 00 00 00 @@ P2 of 01 00 00 00
00 04 00 00 00 00

._02 00 00 00 21 00

01 00 00 00 00 00 00 cO fe 00 0O

OONOENOONO0N00 @8 03 00 00 00 24 00 00 00 02 02

01 00 00 00 00 0O OO OO fO OO 02 00 67 01 00 00

20 00 00 00 [02 3 0 00 ENNOENONNGN
00 00 00 00 --— 68 01 00 00

d3 di 4b 4a Te ff

Decoding Opcodes (o001 entry at ofrser 020000 (engeh = B2l

Data:
02 00 0Of 01 00 OO OO OO0 OO 00 cO fe 00 00 0O 0O

01 00 00 00 00 OO 00 00 OO

Decoded:
Opzcde :© S3_BOOTSCRIPT_MEM WRITE (0x02)
Width : OXOOM(INBYESS)
Address: O0xXFEC0000O0
Count : -
Values : -

[359] Entry at offset 0x2F2C (length = 0x20) :

Data:
01 02 30 04 00 00 00 00O 21 00 OO OO 00 0O 0O 0O

de ff f£f ££f 00 00 00 00
Decoded:

“paode © 83 BOOTSCRIPT IO READ WRITE (0x01)
width : DXO02N(4NBYEEs)

Address: 0x00000430

value : [EENESNEN

Mask : DNBEEBEEDE

chipsec util.py uefi s3bootscript

S3 Boot Script Opcodes

I/O port write (0x00)
I/O port read-modify-write (0x01)
Memory write (0x02)
Memory read-modify-write (0x03)

PCle configuration write (0x04)

PCle configuration read-modify-write
(0x05)

SMBus execute (0x06)
Stall (0x07)
Dispatch (0x08) / Dispatch2 (0x09)

Information (0x0A)

So what can go wrong with the script?

. Address (pointer) to S3 boot script is not protected (eg. NV+RT+BS
AcpiGlobalTable)

. The S3 boot script itself is stored in memory (eg. ACPI NVS) accessible
to the OS or DMA capable devices

. The executable parsing and interpreting the S3 boot script is running out
of unprotected memory

. S3 boot script contains Dispatch (or Dispatch2) opcodes with entry-
points in unprotected memory

. EFI firmware does not add S3 boot script opcodes which restore all
required hardware locks and protections

BIOS protection is ON

Configuration
p Status
JrltP Prnt ctimn

PASSED: BIOS is write
D protected

Mone of the SPI protected range

PASSED: BIOS is write protected

Sleep well!

[x][Module: S3 Resume Boot-Script Testing
3 -, Ldid-
[helper] -» NtEnumerateSystemEnvironmentValuesEx(infcls=2)..
[uefi] searching for EFI variable(s): ['AcpiGlobalVariable']
[uefi] found: 'AcpiGlobalVariable' {AF9FFD67-EC10-483A-9DFC-6CBF5EE22C2E} NV+BS+RT wvariable
[uefi] Pointer to ACPI Global Data structure: @x0000000@DAS9IBE1S
[uefi] Decoding ACPI Global Data structure..
[uefi] ACPI Boot-Script table base = @xP00REOOEDASSAR1S
[uefi] Found 1 S3 resume boot-scripts
[uefi] S3 resume boot-script at Ox0000000BDABEAD1S
[uefi] Decoding S3 Resume Boot-Script..
[uefi] S3 Resume Boot-Script size: @x5776
[*] Looking for @x4 opcodes in the script at @x00000000DA38AR1S. .
[+] Found opcode at offset Ox4BFB
Opcode : 53 BOOTSCRIPT PCI_CONFIG WRITE (0x@4)
Width : @x08 (1 bytes)
Address: @x801FeaDC
Count : 9x1
Values : @x2A

[*] Modifying register value at address 0x@0000000DASBEC33..

[*] Original value: @x2A

[*] Modified value: @x9

[*] After sleep/resume, check the value of PCI config register 8x001F@BDC is 8x9
[+] PASSED: The script has been modified. Go to sleep..

BIOSWE
BLE

| BIOS Write Protection
disabled!

BIOS Region: E=. ' J » Limit = FAILED: B|OS iS NOT

Protected Rang

protected completely

Mone of the SPI protected ranges write-pr//ect BIOS region

[1] BIOS should enable all available SMM basedfwrite protection mechanisms or
[-] FAILED: BIOS is NOT protected completely

Opcode restoring BIOS Write Protection has been modified

S3 BOOTSCRIPT_PCI_CONFIG_WRITE opcode in the S3
boot script restored BIOS hardware write-protection in OFF
State

[569] Entry at offset Ox4BFB (len = 0x21, header len = 0x8):
Data:

| ©
Decoded:
Opcode : S3 BOOTSCRIPT_PCI_CONFIG_WRITE (0x04)
Width : 9x00 (1 bytes)
Address: 0x001F00DC
Count : Ox1

There’s a script to detect these issues

chipsec main.py -m common.uefi.s3bootscript

[x]1I
[x][Module: S3 Resume Boot-Script Protections
[x]1I
[!] Found 1 S3 boot-script(s) in EFI variables

[*] Checking S3 boot-script at 0x00000000DA88A018

[!] S3 boot-script is not in SMRAM

[*] Reading S3 boot-script from memory..

[*] Decoding S3 boot-script opcodes..

[*] Checking entry-points of Dispatch opcodes..

[-] Found Dispatch opcode (offset 0x014E) with Entry-
Point: 0x00000000DA5C3260 : UNPROTECTED

[-] Entry-points of Dispatch opcodes in S3 boot-script are
not in protected memory

[-] FAILED: S3 Boot Script and entry-points of Dispatch
opcodes do not appear to be protected

Protecting the S3 Boot Script

1.

@

Do not keep address (pointer) to S3 Boot Script table in unprotected non-volatile
UEFI variable (ex. NV+RT+BS AcpiGlobalVariable)

Do not keep address (pointer) to S3 Boot Script table or to a structure containing
address of the script in unprotected non-volatile UEFI variable (ex. NV+RT+BS
AcpiGlobalVariable)

Do not save the S3 Boot Script table to memory accessible by the OS or DMA
capable devices

Do not save the PEI executable that parses and executes the S3 Boot Script table
and any other PEI executable(s) needed for S3 resume to memory accessible by
the OS or DMA capable devices

Saving a pointer to the S3 boot script in a UEFI variable that is accessible by the
OS or DMA capable devices

Review the S3 Boot Script for Dispatch opcodes and establish whether the target
code is protected.

SMI Handler Call-Outs
Vulnerabhilities

Example 2

Once upon a time...

In 2009, SMI call-out vulnerabilities were discovered by Rafal Wojtczuk and
Alex Tereshkin in EFI SMI handlers (Attacking Intel BIOS) and by Filip
Wecherowski in legacy SMI (BIOS SMM Privilege Escalation Vulnerabilities)

Also discussed by Loic Duflot in System Management Mode Design and
Security Issues

In 2015(!) researchers from LegbaCore found that many modern systems are
still vulnerable to these issues How Many Million BIOS Would You Like To
Infect (paper)

intel‘ .

https://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf
http://www.securityfocus.com/archive/1/505590
http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_final.pdf
http://www.legbacore.com/Research_files/HowManyMillionBIOSWouldYouLikeToInfect_Full2.pdf
http://legbacore.com/Research_files/HowManyMillionBIOSesWouldYouLikeToInfect_Whitepaper_v1.pdf

These issues seem to come in packs

Disassembly of the code of $5MISS handler, one of SMI handlers in
the BIOS firmware in ASUS Eee PC 1000HE system.

Q003F073: 50 push ax

0003F074: B4A1 mov ah,0A1

== DO03F076: 9A1970D00F0 call OFDOD: 07D 19
Q003F07B: 2404 and al,004

Q003F070D: 7414 j2 00003F093

0003F07F: B4324 mov ah,034

== 0003F081: 9A708000F0 call OF0O00:08070

14 call-out vulnerabilities in one SMI
handler!

BIOS SMM Privilege Escalation Vulnerabilities

http://www.securityfocus.com/archive/1/505590

Legacy SMI Handlers Calling Out of SMRAM

Phys Memory

SMRAM
CALL F000:8070

1 MB

Legacy BIOS Shadow
(F/ E-segments)
PA = 0xF0000

SMI Handlers Calling Out of SMRAM

Phys Memory
SMRAM

CALL F000:8070
1 MB
Code fetch

Legacy BIOS Shadow in SMM
(F/ E-segments)
PA = 0xF0O000

SMI Handlers Calling Out of SMRAM

Phys Memory
SMRAM

CALL F000:8070

1 MB

Code fetch
Legacy BIOS Shadow in SMM

(F/ E-segments)
PA = 0xF0O000

OF000:08070 = 0xF8070: payload
OxF8070 PA

BIOS developers can easily detect call-outs

1. A“simple” HW debugger script to step on branches and
verify that target address of the branch is within SMRAM

2. Enable SMM Code Access Check HW feature on pre-
production systems based on newer CPUs to weed out all
“intended” code fetches outside of SMRAM from SMI drivers

3. NX based soft SMM Code Access Check patches by

Phoenix look promisina -
* How it works

— On every SMI, the same page tables
are selected, paging and NX support is
enabled SMRAM
— The original state is already saved in _
SMM save state to be restored on exit e
— The page tables have been configured

with the XD bit in every PTE that does
not overlap with SMRAM

— The CPU throws a page fault on any
attempt to fetch code that is located in
a page outside of SMRAM

http://www.uefi.org/sites/default/files/resources/UEFI_Plugfest_May_2015 Firmware - Securing SMM.pdf

Mitigating SMM Call-Outs

1. Don’t call any function outside of protected SMRAM

— Violates “No read down” rule of classical Biba integrity model

2. Enable SMM Code Access Check CPU protection

— Available starting in Haswell based CPUs
— Available if MSR_SMM MCA CAP[58] ==

— When enabled, attempts to execute code not within the ranges defined by the SMRR while
inside SMM result in a Machine Check Exception

Blocking Code Fetch Outside of SMRAM

Phys Memory
SMRAM

CALL F000:8070

1 MB
Code fetch
Legacy BIOS Shadow in SMM >
(GASEELNERS) causes MC
PA = 0xF0000 exception

0F000:08070 = .
OXEB070 PA O0xF8070: payload

Bad Input Pointer
Vulnerabhilities

Example 3

System Management Interrupt (SMI) Handlers

OXFFFFFFFF

SMRAM

SMRR_PHYSBAS
E

SMBASE + FFFFh
save area
SMBASE + FCO00h
SMI
handlers
SMBASE + 8000h

0x00000000

SMBASE

Pointer Arguments to SMI Handlers

Phys Memory

SMI Handlers in
RAX (code) SMRAM

RBX (pointer)
OS Memory

SMI handler structure

RCX (function)

SMI Handler writes result to a buffer at address passed in RBX...

Pointer Vulnerabilities

Phys Memory

SMI Handlers in
RAX (code) SMRAM
RBX (pointer) Fake structure inside

SMRAM

RCX (function)
OS Memory

Sl

RDX

Exploit tricks SMI handler to write to an address inside SMRAM

How does the attack work?

Phys Memory
Area

RBX (pointer)
SMI Entry Point

RCX (function) SMI Handler (SMBASE +

000h)
OS Memory

SMBASE
SMI handler structure

 CPU stores current value of SMBASE in SMM save state area on SMI
and restores it on RSM

How does the attack work?

Phys Memor

Saved SMBASE value SMM State Save
Area

SMI Entry Point
SMI Handler (SMBASE +
8000h)
SMBASE

OS Memory

Fake SMI handler

» Exploit prepares fake SMRAM with fake SMI handler outside of SMRAM

How does the attack work?

Phys Memory

)
| Entry Point
SMI Handler MBASE +
8000h)
SMBASE

\ OS Memory

Fake SMI handler

« Exploit triggers SMI w/ RBX pointing to saved SMBASE address in SMRAM
« SMI handler overwrites saved SMBASE on exploit’'s behalf with address of fake SMI handler
outside of SMRAM (e.g. 0 PA)

intel‘ .

How does the attack work?

Phys Memory

Saved SMBASE value SMM State Save
Area

SMI Handler

Iljff> OS Memory

Fake SMI handler New SMI Entry Point

« Exploit triggers another SMI
* CPU executes fake SMI handler at new entry point outside of original

irotected SMRAM because SMBASE location chanied

How does the attack work?

Phys Memor

Original saved SMBASE SMM State Save
value Area
SMI Handler

(SMRAM is not protected)

OS Memory

Fake SMI handler New SMI Entry Point
—————— G\ |BASE

» Fake SMI handler disables original SMRAM protection (disables SMRR)
« Then restores original SMBASE values to switch back to original SMRAM

How does the attack work?

Phys Memor

SMI Handler SMI Entry Point
(SMRAM is not protected) (SMBASE +
8000h)
SMBASE

OS Memory

« The SMRAM is restored but not protected by HW anymore
| « Any SMI handler may be installed/modified by malware

Input Pointers in EDKII: CommBuffer

» CommBuffer is a memory buffer used as a communication protocol
between OS runtime and DXE SMI handlers

= Pointer to CommBuffer is stored in “UEFI” ACPI table in ACPI NVS

memory accessible to OS

= Contents of CommBuffer are specific to SMI handler. Variable SMI
handler read UEFI variable GUID, Name and Data from

CommBuffer

Vulnerability
CommBuffer SMM Overwrite/Exposure (3 issues)

TOCTOU (race condition) Issue with CommBuffer (2 issues)

SMRAM Overwrite in Fault Tolerant Write SMI Handler (2 issues)

SMRAM Overwrite in SmmVariableHandler (2 issues)

Ref

Tianocore

Tianocore

Tianocore

Tianocore

Affected Reported by

EDK2

EDK?2
EDK?2

EDK2

Intel ATR

Intel ATR
Intel ATR

Intel ATR

http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download

Attacking CommBuffer Pointer

SecurityPkg/VariableAuthenticated/RuntimeDxe:
SmmVariableHandler (

SmmVariableFunctionHeader = (SMM VARIABLE COMMUNICATE HEADER *)CommBuffer;
switch (SmmVariableFunctionHeader->Function) {
case SMM VARIABLE FUNCTION GET VARIABLE:
SmmVariableHeader = (SMM_VARIABLE_COMMUNICATE_ACCESS_VARIABLE *)
SmmVariableFunctionHeader->Data;
Status = VariableServiceGetVariable (

(UINT8 *)SmmVariableHeader->Name + SmmVariableHeader->NameSize

);
VariableServiceGetVariable (

ouT VOID *Data
)

CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);

CommBuffer

Mitigating CommBuffer Attack

= SMI Handlers often have multiple commands, calling a different
function for each command and take command specific arguments

= Note the calls to SmmIsBufferOutsideSmmvalid. This checks for
addresses to overlap with SMRAM range

SmiHandler () {
// check CommBuffer is outside SMRAM
if (!'SmmIsBufferOutsideSmmValid (CommBuffer, Size)) {
return EFI SUCCESS;
}
switch (command)
case 1: do commandl (CommBuffer) ;

case 2: do _command2 (CommBuffer) ;

CommBuffer

CommBuffer TOCTOU Issues

« SMI handler checks that it won’t access outside of CommBuffer
« What if SMI handler reads CommBuffer memory again after the check

« DMA engine (for example GFx) can modify contents of CommBuffer
Time of Check

InfoSize = .. + SmmVariableHeader->DataSize + SmmVariableHeader->NameSize;
if (InfoSize > *CommBufferSize - SMM_VARIABLE_COMMUNICATE_HEADER_SIZE) {
Status = VariableServiceGetVariable (

(UINT8 *)SmmVariableHeader->Name + SmmVariableHeader->NameSize

);
VariableServiceGetVariable (

ouT VOID *Data

) Time of Use

if (*DataSize >= VarDataSize) {
CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);

Detecting Bad SMI Input Pointers

Allocate a buffer in physical memory

Set GP registers to address of allocated memory buffer
Invoke SW SMI

Check fill pattern

W N e

[X][Module: A tool to test SMI handlers for pointer validation vulnerabilies

Usage: chipsec_main -m tools.smm.smm_ptr [-a <fill_byte>,<size>,<config_file>,<address> |

Detecting Bad SMI Input Pointers

[*] Configuration:

Byte to fill with : Ox11
No of bytes to fill : 0x500
SMI config file . chipsec/modules/tools/smm/smm_config.ini

Default value of GP registers : OX5A5A5A5A5A5A5A5A
Allocated physmem buffer : 0x0000000071A20800 (passed in GP reg to SMI)
Second order buffer mode : OFF

[*] Fuzzing SMI handlers defined in 'chipsec/modules/tools/smm/smm_config.ini'..
[*] Filling in 1280 bytes at PA 0x0000000071A20800 with "..
[*] Sending SMI# Ox5A (data = 0x5A) SW_SMI_Name (swsmi_desc)..
RAX: 0x0000000071A20800 (AX will be overwritten with values of SW SMI ports B2/B3)
RBX: 0x0000000071A20800
RCX: 0x0000000071A20800
RDX: 0x0000000071A20800 (DX will be overwritten with 0x00B2)
RSI: 0x0000000071A20800
RDI: 0x0000000071A20800
Checking contents at PA 0x0000000071A20800..
[+] Contents at PA 0x0000000071A20800 have not changed

Validate input addresses before using them!

» Read pointerissues are also exploitable to expose SMRAM contents

» SMI handlers have to validate each address/pointer (+ offsets) they receive from OS prior to
reading from or writing to it including returning status/error codes

— E.g. use/implement a function which validates address + size for overlap with SMRAM similar to
SmmIsBufferOutsideSmmValid in EDKII

+fl'3|i=k
This function check if the buffer is valid per processor architecture and not overlap with SMRAM.

3
+

4+ (dparam Buffer The buffer start address to be checked.
+ (@param Length The buffer length to be checked.
3
3
+

firetval TRUE This buffer is walid per processor architecture and not overlap with SMRAM.
{iretval FALSE This buffer is not valid per processor architecture or overlap with SMRAM.

xS

+BOOLEAN

+EFIAPL

#SmmIsBufferOutsideSmmValid (

+ IN EFI_PHYSICAL_ ADDRESS Buffer,

+ IN UINT&4 Length

)

