
© 2019 KUDELSKI GROUP - All rights reserved

12.03.2019

The Pitfalls of Threshold Cryptography in Hardware

Marco Macchetti, Karine Villegas, Claudio Favi

22

Outline

◎ Brief review of relevant theoretical models

◎ The reality of HW implementations

Conceptual vs. real circuit

Designer’s perspective

Automated synthesis tools

◎ Possible issues and possible solutions

Parallel computation on shares

Logic reuse

Control signals

◎ Conclusions and problem statements

33

Brief Literature overview

◎ Towards Sound Approaches to Counteract Power-Analysis Attacks

◎ Seminal paper by Chari et al. @ CRYPTO’99

◎ Introduction of the noisy leakage model

◎ Highlights the difference between ad-hoc countermeasures against SCA and

provably secure ones

Ad-hoc: shuffling, “dual” logic, current filtering, shields, etc…

Provable: secret sharing on d random shares (against a d-1 adversary)

◎ Derives bounds on the distinguishing power of a differential attacker in terms

of number of samples

◎ Samples leak information on all shares, but in a noisy way

44

Brief Literature overview

◎ Masking against Side-Channel Attacks:A Formal Security Proof

◎ Paper by Prouff and Rivain @ EUROCRYPT 2013

◎ Extends and builds upon Chari’s paper

◎ Chari makes static analysis while here the analysis is on computations

◎ A basic assumption is that computations are split in basic computations

which are performed sequentially (e.g. CPU instructions)

◎ Obtain bounds on adversarial advantages for full computations

◎ Chari : adversary observes all shares with noise

proves lower bound on samples, meaning the adversary can always succeed but
needs a certain number of traces

55

Brief Literature overview

◎ Private Circuits: Securing Hardware against Probing Attacks

◎ T-probing model : introduced by Ishai et al. @ CRYPTO ‘03

◎ Attacker has access to at most t wires of the circuit at each “time period”

(e.g. clock cycle)

◎ Access via physical probes

◎ Assumed costly to switch position of probes, but possible between different

“time periods”

◎ Cost also increases with number of probes

◎ Obtains lower bounds on how big a circuit with n gates must become to be

resistant against t probes  O(nt2)

66

Brief Literature overview

◎ Unifying Leakage Models: from Probing Attacks to Noisy Leakage

◎ Paper by Duc et al. @ EUROCRYPT 2014

◎ The two previous leakage models have been then shown to be related by

reducing security in one model to security in the other one

◎ “A t-order (noisy) SC attack is equivalent to placing t probes on the circuit”

◎ Aims at unification of leakage models to simplify analysis of

countermeasures

◎ But we have to remind the basic assumptions of these papers

This is true in the considered models

77

Brief Literature overview

◎ It has then become common to refer to a first order SC attack as equivalent

to placing a single probe in the circuit

◎ Masking AES with just two random bits, Gross et al. 2018

88

Discussion

◎ Is all this really closely modeling reality?

◎ In the models, a single probe means probing a single signal in the circuit

E.g. a single bit

◎ In reality even the smallest EM probe collects the leakage corresponding to

many logic events in the circuit at the same time.

◎ What exactly do we mean when we talk about a circuit in these papers?

◎ How is it related to a real chip?

◎ How is the model related to a real attacker?

99

Circuit in complexity theory

◎ A Boolean circuit in computational complexity theory is a model of a digital

circuit, consisting in a directed acyclic graph built of bounded-fan-in AND,

OR and NOT gates.

◎ E.g. a conceptual circuit scheme

◎ Suppose we prove some statement

about this circuit.

◎ Will it still hold for the manufactured

circuit on a real silicon chip?

1010

Side Channel Leakage

◎ Every circuit computing a given function consumes energy

c = f(a, b)

◎ In CMOS digital logic, basic units are transistors, used as switches

First approximation: energy is consumed when switches change state

(0  1, 1  0)

Energy necessary to charge / discharge capacitances

0 1 0 1 1 0

1111

Circuits in reality

◎ Real logic gates differ from ideal Boolean gates

They can be more complex (compound)

Or they can be simpler (limited fan-in)

They can have additional hidden variables

1212

Circuits in reality

◎ Different timing characteristics imply different switching activity patterns,

which imply different side channel leakages

◎ Switching activity cannot be determined without examining the previous

state of the circuit.

Reset? Previous vector? Random?

◎ Which gates switch at the same time? One? A single layer? All?

Has also to do with sampling rate of the attacker…

1313

Circuits in reality

◎ Models often consider a precise sequence of computation in a circuit

◎ Almost implicit in papers about HW threshold schemes

◎ But in HW implementations, this is often not the case

One explicit goal of specialized HW is to parallelize in order to speed up w.r.t
software implementations

Designer may not even be aware of the precise order of gate switching

1414

Reality of HW Designer’s job

◎ The HW designer not only has to consider security constraints, but also

timing, power and area ones.

◎ Designer examines scientific literature to find a suitable method which

Meets (in practice!) security robustness expectations (often difficult to quantify
e.g. number of traces? Order of attack?

Meets all other constraints (area / performance / power consumption)

◎ Circuit is designed, functionally verified and taped-out

◎ Chip is manufactured

◎ Chip undergoes security lab evaluation

◎ If weaknesses are found -> need to analyze, fix, and iterate (if possible!)

◎ Full cycles can take up to 1-2 years

1515

Reality of HW Designer’s job

◎ Fact #1: HW designer works at RTL level of abstraction.

◎ He starts from a conceptual circuit and applies his skills to derive the best

circuit architecture under all constraints.

◎ This is a rather high-level representation, equivalent to a high level language

(e.g. C++) for SW

1616

Reality of HW Designer’s job

◎ HW designer can apply several architectural design patterns to an ideal

circuit (RTL):

Round loops

Unrolling

Pipelining

resource sharing

Clock gating

etc...

1717

Reality of HW Designer’s job

◎ Fact #2 The synthesis flow then derives the real design in terms of silicon library

cells….

◎ And layout tools then derive the actual circuit topology on silicon

◎ Equivalent to a SW toolchain C++  compiler  object files  linker  binary code

c <= a * b;

1818

Reality of HW Designer’s job

◎ Synthesis tools can apply a wide range of optimizations automatically, much

like a compiler optimizes C code

◎ Register sharing (different variables are mapped to the same register, or

derived as a Boolean function of another register)

◎ Combinational logic reuse

E.g. a XOR logic is reused on different variables at different cycles.

◎ Register re-timing

boolean logic is moved/split across a register

◎ Constant optimization

logic optimizations are pushed up to the next register

◎ Etc…

1919

Questions

◎ With previous items in mind, is it possible to make a claim about a real chip

adhering to a given theoretical model?

◎ In papers about HW implementations of threshold cryptography, circuit

schemes are often given as a reference for HW implementation.

◎ Are the proposed schemes to be intended as idealized or real circuits?

Before or after optimizations?

◎ Is it possible to deviate from the reference schemes by using the

optimizations discussed above?

2121

Paper examples

◎ Masking AES With d+1 Shares in Hardware

By Rijmen et al. @ CHES 2016

◎ A more efficient AES Threshold Implementation

By Rijmen et al. AFRICACRYPT 2014

2222

Examples of issues

◎ Why could we have problems?

◎ Simple model: single bit is split in two Boolean shares b→ (b1, b2)

First order resistant

◎ parallel transfer of all shares to registers, which were previously

reset to 0

CMOS dynamic power consumption

is due to changing state of logic

cells (first order approximation)

b1

b2

simplest case to analyze,

no computation

2323

Examples of issues

b b1 b2 Power consumption

0 0 0 0

0 1 1 2

1 0 1 1

1 1 0 1

observed events

(single traces)

average

of many traces

b b1 b2 Average

consumption

0 0 0
1

0 1 1

1 0 1
1

1 1 0

b = 0

b = 1

2424

Examples of issues

◎ Attacker who looks at average of traces (1st order) is incapable of extracting

information on b

◎ However, observing a single trace, it is trivial to obtain b

0th order or SPA

◎ Simple SPA inspection or machine learning would trivially break the

implementation

◎ The problem is inherently due to the fact that all shares are manipulated in

parallel

2525

Examples of issues

◎ Is it a violation of the proposed models?

Sequential calculation of shares…

◎ It is not detectable by attacks which just look at average of trace sets

◎ It is really a 0th order problem

◎ The problem is mitigated by noise, but can persist when many bits are

manipulated in parallel

Example, a null-coordinate-point arising from ECC scalar-point multiplication,
which is simply blinded by 1 bit and split in two shares

0x00000000000000 or 0xFFFFFFFFFFFFFFF…

◎ High speed HW threshold implementations can be sensitive to machine

learning / SPA / template attacks

2828

Examples of issues

◎ To solve the problem, we can pre-load the registers with random values

◎ This is OK for sequential logic

◎ But what about combinational logic? Looks like an extremely complex

problem in the generic instance (timing/activity/logic cells)

◎ Generic solution: never manipulate all shares at the same time

easy for linear functions  compute independently on single shares

Non-linear: they are already shared, but compute single bits individually

first-order resistant

4-shares input

3-shares output

GF(2^4) multiplier







2929

Examples of issues

◎ Another example: Boolean to arithmetic masking switching algorithm,

proposed by Goubin in 2001

◎ Proven to be first order resistant, under the implicit assumption of a

sequential SW implementation.

◎ Potential problem if logic

resources are shared

between algorithm steps

◎ Poses hard constraints on

possible circuit, to stick to

the model

3030

Examples of issues

◎ Third example: multiplexer with glitchy selector

◎ Control path must also be inspected as can be source of problems as well

as data path

sel

A

B

0

3131

Conclusions

◎ Models are good, but they do not always fully adhere to reality

◎ Hard lesson : models are never complete

◎ Generic solutions for HW implementations:

Always pre-charge registers with random values

Always register control signals

Always compute sequentially on single shares

◎ Of course, all this has severe impact on performance.

3232

Future work

◎ Two open problems statements:

◎ A rather complex one for future research:

Devise an high-speed HW threshold implementation which is also resistant
against all attacks under a certain order, including profiled attacks (templates,
machine-learning, etc…)

◎ A (really?) less complex one related to standardization:

At which level should HW threshold schemes be described in the standard(s)
and at which level should we certify?

Regarding HW, should we formalize requirements or standardize techniques for
circuit implementation/optimization?

3333

Thank you!

	12.03.2019
	Outline
	Brief Literature overview
	Brief Literature overview
	Brief Literature overview
	Brief Literature overview
	Brief Literature overview
	Discussion
	Circuit in complexity theory
	Side Channel Leakage
	Circuits in reality
	Circuits in reality
	Circuits in reality
	Reality of HW Designer’s job
	Reality of HW Designer’s job
	Reality of HW Designer’s job
	Reality of HW Designer’s job
	Reality of HW Designer’s job
	Questions
	Paper examples
	Examples of issues
	Examples of issues
	Examples of issues
	Examples of issues
	Examples of issues
	Examples of issues
	Examples of issues

