
ThreeBears post-
quantum KEM

12 April 2018

Mike Hamburg



2

Integer MLWE
+ Can leverage existing bignum implementations
+ Simple to specify and implement
– New and untried
– Everyone hates carry chains

BCH 2-error-correcting code
+ Improves security, efficiency
+ Simple, fast, constant time
– Adds complexity vs no ECC

Carefully designed CCA security mode (based on Fujisaki-Okamoto)
+ Simple and efficient
+ Provably secure (QROM)
– Explicit rejection leaves room for screwups

What’s different about ThreeBears?



3

Conservative goal -> conservative parameters
Don’t let porridge get stolen

Very high security levels: Q-core-sieve difficulty (ADPS 2015)
BabyBear: 2142 / 2152 MamaBear: 2220 / 2237 PapaBear: 2292 / 2320

Maybe overspecced?

Tiny failure probability to prevent CCA attacks

Enough noise to prevent lattice+MITM hybrid attacks

Advantage: security



4

Advantage: efficiency

50

100

150

200

250

300

350

400

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Data sent for one key exchange (KB)

Q
-C

or
e-

Si
ev

e 
se

cu
rit

y 
(b

its
)

BabyBear

MamaBear

PapaBear

Top few in security vs bandwidth

Excellent cross-platform performance

Ephemeral

CCA-secure



5

No magic constants, no special representations

Easy to optimize
Designed for constant-time operation
No vectorization required
≈1200 lines + 100 lines/instance optimized, cross-platform C

Includes comments and headers
Includes support for vectorized libkeccak if present

One compromise: BCH 2-error-correcting code
+8% efficiency; more conservative
< 100 lines constant-time optimized C, including header

Advantage: simplicity
Complexity harms efficiency, security, trustworthiness



6

Details



7

Polynomial MLWE: polynomials mod sparse low-weight polynomial 𝑃𝑃(𝑥𝑥)
Lattice is spanned by powers of 𝑥𝑥
Reduce coefficients mod 𝑞𝑞

Integer MLWE: polynomials mod sparse low-weight polynomial 𝑃𝑃(𝑥𝑥)
Lattice is spanned by powers of 𝑥𝑥
Evaluate at some particular 𝑥𝑥 to get an integer mod 𝑁𝑁 = 𝑃𝑃(𝑥𝑥)

ThreeBears: 𝑥𝑥 = 210, 𝑁𝑁 = 𝑃𝑃(𝑥𝑥) = 𝑥𝑥312 − 𝑥𝑥312/2 − 1
𝑁𝑁 is prime, so no subrings
Fast bignum arithmetic: Karatsuba, Solinas
Easy to encode and decode, since 𝑥𝑥 is a power of 2

Integer module learning with errors



8

Private key:
Choose low-weight vector 𝑎⃗𝑎, 𝜖𝜖 ∈ 𝑅𝑅𝑑𝑑
Seed for random matrix 𝑈𝑈 ∈ 𝑅𝑅𝑑𝑑×𝑑𝑑

Public key:
Seed for 𝑈𝑈; 𝐴𝐴 ∶= 𝑈𝑈𝑎⃗𝑎 + 𝜖𝜖

Encrypt a message 𝑚𝑚:
Choose low-weight vectors 𝑏𝑏,𝛿𝛿 ∈ 𝑅𝑅𝑑𝑑
𝐵𝐵 ≔ 𝑏𝑏⊤𝑈𝑈 + 𝛿𝛿⊤, high bits of 𝐶𝐶 ≔ 𝑏𝑏⊤𝐴𝐴 + 𝛿𝛿′ + encode(𝑚𝑚)

Decrypt:
round and decode 𝐶𝐶 − 𝐵𝐵𝑎⃗𝑎

Key exchange from MLWE à la LPR10



9

HILA5: XE5 5-error-correcting custom code
Simple, but adds 240 bits to plaintext
We only have 56 bits for redundancy

LAC: many-error-correcting BCH code
Complex
Hard to make constant-time

ThreeBears: 2-error-correcting BCH code (Melas variant)
Adds 18 bits to plaintext = 9 bytes to ciphertext
Small, fast, constant-time
Adds ≈8% efficiency and reduces risk of hybrid attack

Error correction



10

Protected from multiple-target attacks
Hash the pubkey’s matrix seed into everything 

No key confirmation tag: it’s not necessary

Explicit rejection: provably secure, in part because 𝑁𝑁 is prime

New post-quantum (QROM) security analysis
Probably still loose, but a big improvement!

AdvCCA ≤ 𝑂𝑂(𝑞𝑞 keyspace + 𝑞𝑞 failure + 𝑞𝑞 ⋅ AdvRLWE)

Fujisaki-Okamoto transform for CCA version



11

ThreeBears is simple, conservative and efficient
Worth studying even though I-MLWE is new
Consider using its components as 2nd-round tweaks

Thanks for your attention!

Conclusion


	Slide Number 1
	What’s different about ThreeBears?
	Advantage: security
	Advantage: efficiency
	Advantage: simplicity
	Details
	Integer module learning with errors
	Key exchange from MLWE à la LPR10
	Error correction
	Fujisaki-Okamoto transform for CCA version
	Conclusion

