What’s different about ThreeBears?

Integer MLWE
+ Can leverage existing bignum implementations
+ Simple to specify and implement
 – New and untried
 – Everyone hates carry chains

BCH 2-error-correcting code
+ Improves security, efficiency
+ Simple, fast, constant time
 – Adds complexity vs no ECC

Carefully designed CCA security mode (based on Fujisaki-Okamoto)
+ Simple and efficient
+ Provably secure (QROM)
 – Explicit rejection leaves room for screwups
Advantage: security

Conservative goal -> conservative parameters
 Don’t let porridge get stolen

Very high security levels: Q-core-sieve difficulty (ADPS 2015)
 BabyBear: $2^{142} / 2^{152}$ MamaBear: $2^{220} / 2^{237}$ PapaBear: $2^{292} / 2^{320}$
 Maybe overspecced?

Tiny failure probability to prevent CCA attacks

Enough noise to prevent lattice+MITM hybrid attacks
Advantage: efficiency

- BabyBear
- MamaBear
- PapaBear

Q-Core-Sieve security (bits)

Data sent for one key exchange (KB)

- Ephemeral
- CCA-secure

Top few in security vs bandwidth
Excellent cross-platform performance
Advantage: simplicity

Complexity harms efficiency, security, trustworthiness

No magic constants, no special representations

Easy to optimize
 Designed for constant-time operation
 No vectorization required
 \approx 1200 \text{ lines} + 100 \text{ lines/instance optimized, cross-platform C}
 \quad \text{Includes comments and headers}
 \quad \text{Includes support for vectorized libkeccak if present}

One compromise: BCH 2-error-correcting code
 +8\% efficiency; more conservative
 < 100 \text{ lines constant-time optimized C, including header}
Integer module learning with errors

Polynomial MLWE: polynomials mod sparse low-weight polynomial $P(x)$
 Lattice is spanned by powers of x
 Reduce coefficients mod q

Integer MLWE: polynomials mod sparse low-weight polynomial $P(x)$
 Lattice is spanned by powers of x
 Evaluate at some particular x to get an integer mod $N = P(x)$

ThreeBears: $x = 2^{10}$, $N = P(x) = x^{312} - x^{312/2} - 1$
 N is prime, so no subrings
 Fast bignum arithmetic: Karatsuba, Solinas
 Easy to encode and decode, since x is a power of 2
Key exchange from MLWE à la LPR10

Private key:
Choose low-weight vector $\vec{a}, \vec{\epsilon} \in R^d$
Seed for random matrix $U \in R^{d \times d}$

Public key:
Seed for U; $A := U\vec{a} + \vec{\epsilon}$

Encrypt a message m:
Choose low-weight vectors $\vec{b}, \vec{\delta} \in R^d$
$B := \vec{b}^T U + \vec{\delta}^T$, high bits of $C := \vec{b}^T A + \delta' + \text{encode}(m)$

Decrypt:
round and decode $C = B\vec{a}$
Error correction

HILA5: XE5 5-error-correcting custom code
 Simple, but adds 240 bits to plaintext
 We only have 56 bits for redundancy

LAC: many-error-correcting BCH code
 Complex
 Hard to make constant-time

ThreeBears: 2-error-correcting BCH code (Melas variant)
 Adds 18 bits to plaintext = 9 bytes to ciphertext
 Small, fast, constant-time
 Adds $\approx 8\%$ efficiency and reduces risk of hybrid attack
Fujisaki-Okamoto transform for CCA version

Protected from multiple-target attacks
 Hash the pubkey’s matrix seed into everything

No key confirmation tag: it’s not necessary

Explicit rejection: provably secure, in part because N is prime

New post-quantum (QROM) security analysis
 Probably still loose, but a big improvement!

$$\text{Adv}_{\text{CCA}} \leq O(q \sqrt{\text{keyspace}} + q \sqrt{\text{failure}} + \sqrt{q \cdot \text{Adv}_{\text{RLWE}}})$$
Conclusion

ThreeBears is simple, conservative and efficient
Worth studying even though I-MLWE is new
Consider using its components as 2nd-round tweaks

Thanks for your attention!