
1

Walnut Digital Signature Algorithm
(WalnutDSA)

NIST Post Quantum Standardization Conference

Derek Atkins,
Chief Technology Officer

April 11, 2018



2

WalnutDSA Method Overview

I Group-theoretic digital signature method based on:
I Infinite group theory
I Matrices over small finite fields
I Permutations

I Built on E -Multiplication, one-way function published in 2005

I Key generation and signature verification are very fast

I Key and signature size (and therefore signature validation time)
scales linearly with security – counteracts Grover

I Non-cyclic and non-abelian; HSP does not apply – not subject to
Shor

I All known attacks are exponential and blocked by parameter-only
changes



3

WalnutDSA Structure
I Systemwide Data:

I Braid Group: N
I Finite Field: q
I Encoder function: E () – converts a hash string to a braid

I Private Key:
I Braid Pair: Priv(S), Priv(S’)

I Public Key:
I T-Values: {τ1 · · · τN} (non-zero entries in Fq)
I Pub(S): Matrix + Permutation: (1,1) ? Priv(S)
I Pub(S’): MatrixPart of (1,1) ? Priv(S’)

I Signature over hashed message M:
I Sig: R

(
v3 · Priv(S)−1 · v1 · E (M) · Priv(S′) · v2

)
∈ BN , where R is a

rewriting method and the vi (cloaking elements) disappear under ?

I Verification:
I Verify signature length (214 generator limit)
I Compute M1 =MatrixPart((IdN , IdSN

) ? E (M)) · Pub(S’)
I Compute (M2, σ2) = Pub(S) ? Sig
I Compare M1 and M2 for equality



4

Issues Found
Factoring Attack(s)

I Oxford Attack (prior to NIST): Hart et al found a way to factor
public keys and generate extremely long forged signatures when the
private braids are the same. The shortest forgery they created was
235 Artin generators.
REFUTED: Maximum allowed signature length is 216 generators.
Conjectured shortest forgery is still 220 generators (> 216).

I Modifications: It was shown by W. Beullens how to extend the
Oxford factoring attack even when the private braids are different.
Resulting forgeries are double the Oxford length.
REFUTED: Conjectured shortest forgery is still 221, which is much
longer than the allowed maximum of 216. We propose to further
reduce the maximum to 214.



5

Issues Found
Pollard-rho Attack

I Pollard-rho Attack: A Pollard-rho attack (found by S. Blackburn)
showed that the parameters were too small resulting in an insufficient
number of public keys. Specifically, N and q must satisfy the
inequality qN(N−3)−1 > 22∗SecurityLevel.

ANSWERED: Increasing parameter N from 8 to 10 (without
modifying q) defeats this attack.



6

Issues Found
Encoder Issues

I Non-Injective Encoder: It was pointed out by W. Beullens that the
encoder, as specified, was non-injective which reduced the space of
possible signatures.
ANSWERED: Use a two-bit encoder to create an injective map
from hash output to braid word.

I Encoder Dimension It was pointed out by Beullens that the
message encoder generated a vector space with a dimension that was
too small. Specifically, vector dimension must satisfy the inequality
qdimension > 22∗SecurityLevel.
ANSWERED: Change encoding parameters to injectively leverage
the full space; results in dimension 66 for N = 10 which is sufficiently
large to defeat these attacks without modifying q.



7

Issues Found
Exponential Factoring Attack

I Exponential Attack Beullens and Blackburn found another
exponential factoring attack that leveraged t1 = t2 = 1 and was able
to produce forged private keys resulting in signatures short enough to
be considered valid. The attack runs in qN−5/2 time, but they claim
they can reduce that to qN/2−1.

ANSWERED: Assuming their worst-case can be verified, increasing
parameters N and q to 11 and 231 − 1 (M31) achieves 128-bit
security (and B11M61 achieves 256-bit).

With q prime we can also tweak cloaking elements and no longer
require t1 = t2 = 1, further complicating this type of attack,
increasing work to q(N−1)/2

√
60, allowing us to reduce to B10.

Performance impact is minimal (e.g. 175,285 cycles to verify a
signature – still #1).



8

Performance

I Small implementation of verification function (˜3000 bytes of code)

I 7 of the 8 submitted WalnutDSA implementations were the
FASTEST signature verifications as reported by NIST:

I The proposed increases in parameters still keeps WalnutDSA #1
(175,285 cycles)



9

Summary

I Small code implementation

I Fast runtime

I Lots of analysis since this process began

I All attacks identified have been exponential and handled with
parameter-only changes, typically within hours or days of notification

I Analysis has identified notable improvements we will include in the
next round

I We feel WalnutDSA is an innovative alternative to Lattice/Hash
methods and should continue to be studied in this process



Thank You!
Any Questions?

Derek Atkins, CTO
Phone: +1 203.227.3151

Email: DAtkins@SecureRF.com

mailto:DAtkins@SecureRF.com

