Walnut Digital Signature Algorithm
(WalnutDSA)

NIST Post Quantum Standardization Conference

Derek Atkins,
Chief Technology Officer

eeeeeeeeeeeeeeeeeeeeeeeeeee



WalnutDSA Method Overview

v

Group-theoretic digital signature method based on:

> Infinite group theory
» Matrices over small finite fields
» Permutations

» Built on E-Multiplication, one-way function published in 2005
» Key generation and signature verification are very fast

» Key and signature size (and therefore signature validation time)
scales linearly with security — counteracts Grover

» Non-cyclic and non-abelian; HSP does not apply — not subject to
Shor

» All known attacks are exponential and blocked by parameter-only
changes

G
SECURE/RF



WalnutDSA Structure

» Systemwide Data: » Private Key:
» Braid Group: N » Braid Pair: Priv(S), Priv(S")
» Finite Field: g
» Encoder function: E() — converts a hash string to a braid
» Public Key:
» T-Values: {71 ---7n} (non-zero entries in F)
» Pub(S): Matrix + Permutation: (1,1) x Priv(S)
» Pub(S’): MatrixPart of (1,1) x Priv(S’)
» Signature over hashed message M:
> Sig: R(vs- Priv(S) ™" - vy - E(M) - Priv(s') - v2) € By, where R is a
rewriting method and the v; (cloaking elements) disappear under x
» Verification:
» Verify signature length (2'* generator limit)
» Compute M; =MatrixPart((Idy, Ids, ) * E(M)) - Pub(S’)
» Compute (Mz, 02) = Pub(S) * Sig

SECURE@RFCOmPaFe My and M, for equality

214



Issues Found
Factoring Attack(s)

» Oxford Attack (prior to NIST): Hart et al found a way to factor
public keys and generate extremely long forged signatures when the
private braids are the same. The shortest forgery they created was
235 Artin generators.

REFUTED: Maximum allowed signature length is 2® generators.
Conjectured shortest forgery is still 22 generators (> 216).

» Modifications: It was shown by W. Beullens how to extend the
Oxford factoring attack even when the private braids are different.
Resulting forgeries are double the Oxford length.

REFUTED: Conjectured shortest forgery is still 221, which is much
longer than the allowed maximum of 21®. We propose to further
reduce the maximum to 214,

*
SECURE/RF



Issues Found
Pollard-rho Attack

» Pollard-rho Attack: A Pollard-rho attack (found by S. Blackburn)
showed that the parameters were too small resulting in an insufficient

number of public keys. Specifically, N and g must satisfy the
inequality qN(N_3)—1 ~ p2*SecurityLevel

ANSWERED: Increasing parameter N from 8 to 10 (without
modifying q) defeats this attack.

G
SECURE/RF



Issues Found

Encoder Issues

» Non-Injective Encoder: It was pointed out by W. Beullens that the
encoder, as specified, was non-injective which reduced the space of
possible signatures.

ANSWERED: Use a two-bit encoder to create an injective map
from hash output to braid word.

» Encoder Dimension It was pointed out by Beullens that the
message encoder generated a vector space with a dimension that was
too small. Specifically, vector dimension must satisfy the inequality

dimension 2xSecurityLevel
q > 2 .
ANSWERED: Change encoding parameters to injectively leverage
the full space; results in dimension 66 for N = 10 which is sufficiently
large to defeat these attacks without modifying q.

*
SECURE/RF



Issues Found
Exponential Factoring Attack

» Exponential Attack Beullens and Blackburn found another
exponential factoring attack that leveraged t; = tp = 1 and was able
to produce forged private keys resulting in signatures short enough to
be considered valid. The attack runs in g"V=5/2 time, but they claim
they can reduce that to gN/2-1,

ANSWERED: Assuming their worst-case can be verified, increasing
parameters N and g to 11 and 23! — 1 (M31) achieves 128-bit
security (and B11M61 achieves 256-bit).

With g prime we can also tweak cloaking elements and no longer
require t; = tp = 1, further complicating this type of attack,
increasing work to g(N=1)/2,/60, allowing us to reduce to B10.
Performance impact is minimal (e.g. 175,285 cycles to verify a
signature — still #1).

SECURE/RF



Performance

» Small implementation of verification function (73000 bytes of code)

» 7 of the 8 submitted WalnutDSA implementations were the
FASTEST signature verifications as reported by NIST:

» The proposed increases in parameters still keeps WalnutDSA #1

(175,285 cycles)

?
SECURE@RF

Submission Specific Implementation KeyPair Meo Keypair Ave Sign Median Sign Average Open Meoy pk bytes

WalnutDSA walnut128-bkl 1782814 2086564 126822981 137691863 92699 136 83 1100
WalnutDSA walnut128-stochasticrewrite 1905902 2271199 45760337 51244842 95682 136 83 1200
WalnutDSA walnut128-stochasticrewriten® 1935044 2574824 43111043 48246052 133359 136 83 2000
WalnutDSA walnut128-ref 1135380 1225046 2039841350 2071390234 166520 136 83 1100
WalnutDSA walnut256-ref 1162870 1255020 2026491143 2084771866 168897 291 128 1800
WalnutDSA walnut256-stochasticrewrite 4164257 4519863 127413278 134509781 181122 291 128 2100
WalnutDSA walnut256-bkl 4149445 4456087 454977624 472468875 179665 291 128 1800



Summary

» Small code implementation
» Fast runtime
» Lots of analysis since this process began

» All attacks identified have been exponential and handled with
parameter-only changes, typically within hours or days of notification

» Analysis has identified notable improvements we will include in the
next round

> We feel WalnutDSA is an innovative alternative to Lattice/Hash
methods and should continue to be studied in this process

*
SECURE/RF



Thank You!

Any Questions?

Derek Atkins, CTO
Phone: +1 203.227.3151
Email: DAtkins@SecureRF.com

@
SECURE/RF


mailto:DAtkins@SecureRF.com

