
Breaking REMUS and TGIF

N.Datta, A.Jha, A.Mege*, M.Nandi

Indian Statistical Institute, Kolkata, India
*Airbus Defence and Space, Elancourt, France

NIST Lightweight Workshop, 2019
Nov 05, 2019

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 1 / 23

NIST LwC Security Requirements

Call for submission Draft

Cryptanalytic attacks on the AEAD algorithm shall require at least
2112 computations on a classical computer in a single-key setting.

The limits on the input sizes (plaintext, associated data, and the
amount of data that can be processed under one key) for this member
shall not be smaller than 250 − 1 bytes.

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 2 / 23

NIST LwC Security Requirements

D (data complexity): the maximum amount of data processed under
one key.

T (time complexity): total number of computations done.

Minimum security requirements from an AEAD scheme Ψ

If D < 250 bytes and T < 2112, then Ψ is secure.

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 3 / 23

A Note on the Data Complexity

The Data Limit (Data Complexity of an attack)

Quantifies the online (queries to the AEAD scheme) resource
requirements.

Includes the total number of blocks (among all messages/ciphertexts
and associated data) processed through the underlying primitive for a
fixed master key.

The Computation Time (Time Complexity of an attack)

Quantifies the offline resource requirements, and includes the total
time required to process the offline evaluations of the underlying
block cipher.

The number of primitive evaluations is taken as the time complexity
of evaluations.

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 4 / 23

A Note regarding the Time Complexity

The direct evaluations of the primitives have been considered within time
complexity in multiple papers:

The time-memory trade-off attack by Hellman [Hellman, 80],

Related-key attacks on AES-256 [Biryukov+, 09],

Attacks on hash functions [Kelsey+ 05, 06, Guo+ 14, Andreeva+ 16],

Attacks on HMAC and NMAC [Peyrin+ 12, Leurent+ 13, Peyrin+
14, Guo+ 14, Dinur+ 17],

Attacks on Even-Mansour ciphers [Dunkelman+ 12, Dinur+ 13,
Dinur+ 14, Dunkelman+ 15], and

Multi-key attacks on Even-Mansour cipher [Mouha+ 15].

In fact, this also makes sense in real scenario, where the adversary can
actually make block cipher evaluations on its own by devoting sufficient
time.

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 5 / 23

The Crucial Observation

Main Observation on REMUS and TGIF

REMUS-N1, REMUS-N3, REMUS-M1, TGIF-N1, and
TGIF-M1 restrict the number of offline evaluations of the underlying
block cipher to less than 264 .

This clearly violates the NIST LwC requirements as stated above, as
the adversary is allowed make beyond 264 (anything below 2112 is
valid) block cipher evaluations.

This is especially required from REMUS-N1 and TGIF-N1, which are
the primary variants in their respective submissions.

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 6 / 23

Revisiting the Multi-Key Attack [Mouha+ 15]

Figure: An ideal block cipher EK in the multi-key setting.

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 7 / 23

Revisiting the Multi-Key Attack [Mouha+ 15]

Make the Off-line Queries

Choose K 0 , . . . , K T −1 without replacement.

For i = 0, . . . , (T − 1), simulate the encryption of M using K i , and
store the responce (K i , C i) in a list H.

Make the On-line Queries

Query M under D many independent keys. Let the outputs be
C ̂0 C ̂D−1 , . . . , .

If C i = C ̂j (matching occurs), recover the key K i (with high
probability).

Matching occurs with probability DT /2n .

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 8 / 23

Specification of REMUS-N1 and TGIF-N1

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 9 / 23

Specification of REMUS-M1 and TGIF-M1

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 10 / 23

Specification of REMUS-M1 and TGIF-M1

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 11 / 23

Key Derivation Functions for REMUS -N1/M1 and TGIF
-N1/M1

Choice of Parameters

Block and key size is set to n = 128.

Nonce size is also set to r = 128.

The Key Derivation Function

Takes a nonce N as input and outputs a nonce-based key L:

KDFK (N) := EK (N).

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 12 / 23

Algorithm 1: Find the Nonce-based Key for REMUS
-N1/M1 and TGIF -N1/M1

Step 1: Make the Off-line Queries

Choose L0 , . . . , L2
t −1 without replacement.

For i = 0, . . . , (2t − 1), simulate the encryption of (A, M) using Li as
the nonce-based key, where |A| = |M| = n. Response: (C i , τ i). Store
(Li , C i , τ i) in a list H.

Step 2: Sort the List

Sort entries in H on second and third coordinates, i.e. (C , τ).

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 13 / 23

Algorithm 1: Find the Nonce-based Key for REMUS
-N1/M1 and TGIF -N1/M1

Step 3: Make the On-line Queries and Find Matching

N̂0 N̂2t −1 Choose distinct nonces , . . . , .

For j = 0, . . . , 2d − 1, query (N̂ j , A, M) to the encryption oracle of
AEAD. Let the response be (C ̂j , τ ̂j).

Search (C ̂j , τ̂ j) in H. If ∃i ∈ H such that (Ĉ j , τ̂ j) = (C i , τ i) then
L̂j = Li with very high probability.

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 14 / 23

Specification of REMUS-N3

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 15 / 23

Key Derivation Functions for REMUS-N3

Choice of Parameters

Block and key size is set to n = 128.

Nonce size is set to r = 96.

The Key Derivation Function

Takes a nonce N as input and outputs a nonce-based key L:

KDFK (N) := K ⊕ Nk032 .

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 16 / 23

Extended Algorithm 1: Find the Nonce-based Key for
REMUS-N3

Set the following parameters: t ≥ 32, d = n − t.

Define Li := 0d khiit , where hiit denotes the t-bit representation of
integer i .

Define N̂ j = hjid k0r −d . Note that r − d ≥ 0 due to t ≥ 32.

Invoke Algorithm 1 with this modified Li ’s and N̂ j ’s.

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 17 / 23

Key Recovery Attack against REMUS-N3

Use Algorithm 1 to obtain a nonce-based key pair (N 0 , L0).

= L0 ⊕ N 0k032 Recover the master key K .

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 18 / 23

Forgery against REMUS -N1/N3/M1 and TGIF -N1/M1

Nonce-respecting forgery attacks

Use Algorithm 1 to obtain a nonce-based key pair (N 0 , L0).

Construct valid forgeries of the form (N 0 , A0 , C 0 , T 0), where A0 and C 0

can be chosen arbitrarily, and the tag is computed using L0 , A0 and
C 0 .

This attack is applicable on REMUS-N1 (primary version),
REMUS-N3, and REMUS-M1 as well as TGIF-N1 (primary version)
and TGIF-M1.

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 19 / 23

Complexity of the Attack

Data complexity, D ≈ 2d+5.6 bytes. The factor of 5.6 is due to the
fact that each encryption query consists of 3 ≈ 21.6 blocks of data
and each block contains 24 bytes.

Total time complexity, T ≈ 2t+5.6 + t · 2t + t · 2n−t .

Choices of d and t

The algorithm works for all choices of t ≥ 32, as d + t = 128.

Set t = 90, which gives d = 38.

For this choice of t, we obtain D ≈ 243.6 bytes and T ≈ 297.5, which
clearly falls within the NIST LwC minimum data and time limit.

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 20 / 23

Possible Improvements

Use a hash table instead of a list.

Improve data complexity by using empty message and empty AD.
However, this may lead to some false positives which can be
eliminated by making constant number of checking queries.

Note: We do not use the empty message and AD case, as such inputs
seldom occur in real scenario.

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 21 / 23

Inherent Weakness of REMUS-N1/N3/M1 and
TGIF-N1/M1

Insufficient randomness in the initial state (key, input)

Although the key is derived using nonce for each encryption query,
the adversary can easily fix a constant value as the initial input.

To create an initial state collision, the adversary just needs to collide
the initial key.

Use of nonce in the beginning of AD processing would have prevented
the above attack.

This attack is not possible for REMUS-N2/M2 and TGIF-N2/M2 due
to the larger state.

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 22 / 23

Thank You..!! Questions??

M.Nandi (ISI, Kolkata) Breaking REMUS and TGIF 23 / 23

	Structure Bookmarks
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure

