CRystals–Kyber

Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, Damien Stehlé

authors@pq-crystals.org
https://pq-crystals.org/kyber
August 23, 2019
Kyber.CCAKEM: CCA-secure KEM via tweaked FO transform

- Use implicit rejection
- Hash public key into seed and shared key
- Hash ciphertext into shared key
- Use Keccak-based functions for all hashes and XOF

Reminder: the big picture

Kyber.CPAPKE: LPR encryption or “Noisy ElGamal”

\[
s, e \leftarrow \chi \\
sk = s, pk = t = As + e
\]

\[
r, e_1, e_2 \leftarrow \chi \\
u \leftarrow A^T r + e_1 \\
v \leftarrow t^T r + e_2 + \text{Enc}(m) \\
c = (u, v)
\]

\[
m = \text{Dec}(v - s^T u)
\]
Kyber.CPAPKE: LPR encryption or “Noisy ElGamal”

\[s, e \leftarrow \chi \]
\[sk = s, pk = t = As + e \]
\[r, e_1, e_2 \leftarrow \chi \]
\[u \leftarrow A^T r + e_1 \]
\[v \leftarrow t^T r + e_2 + \text{Enc}(m) \]
\[c = (u, v) \]
\[m = \text{Dec}(v - s^T u) \]

Kyber.CCAKEM: CCA-secure KEM via tweaked FO transform

- Use implicit rejection
- Hash public key into seed and shared key
- Hash ciphertext into shared key
- Use Keccak-based functions for all hashes and XOF
• Use R = Z^q \lfloor \frac{X}{X^2 + 1} \rfloor with q = 7681

• Use centered binomial noise

• Generate A via XOF (NewHope style)

• Compress ciphertexts (round o least-significant bits)

• Compress public keys

Reminder: Kyber in Round 1

• Use MLWE instead of LWE or RLWE
• Use MLWE instead of LWE or RLWE
• Use $\mathcal{R} = \mathbb{Z}_q[X]/(X^{256} + 1)$ with $q = 7681$
Reminder: Kyber in Round 1

- Use MLWE instead of LWE or RLWE
- Use $\mathcal{R} = \mathbb{Z}_q[X]/(X^{256} + 1)$ with $q = 7681$
- Use centered binomial noise
• Use MLWE instead of LWE or RLWE
• Use $\mathcal{R} = \mathbb{Z}_q[X]/(X^{256} + 1)$ with $q = 7681$
• Use centered binomial noise
• Generate A via XOF(ρ) ("NewHope style")
Reminder: Kyber in Round 1

- Use MLWE instead of LWE or RLWE
- Use $\mathcal{R} = \mathbb{Z}_q[X]/(X^{256} + 1)$ with $q = 7681$
- Use centered binomial noise
- Generate A via $\text{XOF}(\rho)$ ("NewHope style")
- Compress ciphertexts (round off least-significant bits)
Reminder: Kyber in Round 1

- Use MLWE instead of LWE or RLWE
- Use $\mathcal{R} = \mathbb{Z}_q[X]/(X^{256} + 1)$ with $q = 7681$
- Use centered binomial noise
- Generate A via XOF(ρ) (“NewHope style”)
- Compress ciphertexts (round off least-significant bits)
- Compress public keys
“We note that a potential issue is that the security proof does not directly apply to Kyber itself, but rather to a modified version of the scheme which does not compress the public key.”

―NIST IR 8240
Main changes in round 2

1. Remove the public-key compression
 - Proof now applies to Kyber itself
 - However, bandwidth requirement increases
Main changes in round 2

1. Remove the public-key compression
 - Proof now applies to Kyber itself
 - However, bandwidth requirement increases

2. Reduce parameter q to 3329
 - Bandwidth requirement decreases

3. Update ciphertext-compression parameters
Main changes in round 2

Kyber sizes, round 1 vs. round 2

<table>
<thead>
<tr>
<th>Kyber512 ($k = 2$, level 1)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>round 1, sizes in bytes</td>
<td></td>
<td>round 2, sizes in bytes</td>
</tr>
<tr>
<td>pk:</td>
<td>736</td>
<td>pk:</td>
</tr>
<tr>
<td>ct:</td>
<td>800</td>
<td>ct:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kyber768 ($k = 3$, level 3)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>round 1, sizes in bytes</td>
<td></td>
<td>round 2, sizes in bytes</td>
</tr>
<tr>
<td>pk:</td>
<td>1088</td>
<td>pk:</td>
</tr>
<tr>
<td>ct:</td>
<td>1152</td>
<td>ct:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kyber1024 ($k = 4$, level 5)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>round 1, sizes in bytes</td>
<td></td>
<td>round 2, sizes in bytes</td>
</tr>
<tr>
<td>pk:</td>
<td>1440</td>
<td>pk:</td>
</tr>
<tr>
<td>ct:</td>
<td>1504</td>
<td>ct:</td>
</tr>
</tbody>
</table>
Main changes in round 2

1. Remove the public-key compression
 - Proof now applies to Kyber itself
 - However, bandwidth requirement increases
2. Reduce parameter q to 3329
 - Bandwidth requirement decreases
3. Update ciphertext-compression parameters
4. Update the specification of the NTT (inspired by NTTRU)
 - Even faster polynomial multiplication
Main changes in round 2

1. Remove the public-key compression
 - Proof now applies to Kyber itself
 - However, bandwidth requirement increases
2. Reduce parameter q to 3329
 - Bandwidth requirement decreases
3. Update ciphertext-compression parameters
4. Update the specification of the NTT (inspired by NTTRU)
 - Even faster polynomial multiplication
5. Reduce noise parameter to $\eta = 2$
 - Faster noise sampling
Main changes in round 2

1. Remove the public-key compression
 - Proof now applies to Kyber itself
 - However, bandwidth requirement increases
2. Reduce parameter q to 3329
 - Bandwidth requirement decreases
3. Update ciphertext-compression parameters
4. Update the specification of the NTT (inspired by NTTRU)
 - Even faster polynomial multiplication
5. Reduce noise parameter to $\eta = 2$
 - Faster noise sampling
6. Represent public key in NTT domain
 - Save several NTT computations
Kyber is fast

<table>
<thead>
<tr>
<th>Kyber512 ($k = 2$, level 1)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sizes (in Bytes)</td>
<td>Haswell Cycles (AVX2)</td>
</tr>
<tr>
<td>sk:</td>
<td>1632</td>
</tr>
<tr>
<td>pk:</td>
<td>800</td>
</tr>
<tr>
<td>ct:</td>
<td>736</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kyber768 ($k = 3$, level 3)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sizes (in Bytes)</td>
<td>Haswell Cycles (AVX2)</td>
</tr>
<tr>
<td>sk:</td>
<td>2400</td>
</tr>
<tr>
<td>pk:</td>
<td>1184</td>
</tr>
<tr>
<td>ct:</td>
<td>1088</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kyber1024 ($k = 4$, level 5)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sizes (in Bytes)</td>
<td>Haswell Cycles (AVX2)</td>
</tr>
<tr>
<td>sk:</td>
<td>3168</td>
</tr>
<tr>
<td>pk:</td>
<td>1568</td>
</tr>
<tr>
<td>ct:</td>
<td>1568</td>
</tr>
</tbody>
</table>
Kyber is fast and small

<table>
<thead>
<tr>
<th></th>
<th>Kyber512 (k = 2, \text{ level 1})</th>
<th>Kyber768 (k = 3, \text{ level 3})</th>
<th>Kyber1024 (k = 4, \text{ level 5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack usage (in Bytes)</td>
<td>gen: 2952</td>
<td>gen: 3848</td>
<td>gen: 4360</td>
</tr>
<tr>
<td></td>
<td>enc: 2552</td>
<td>enc: 3128</td>
<td>enc: 3584</td>
</tr>
<tr>
<td></td>
<td>dec: 2560</td>
<td>dec: 3072</td>
<td>dec: 3592</td>
</tr>
<tr>
<td>Cortex-M4 Cycles</td>
<td>gen: 513992</td>
<td>gen: 976205</td>
<td>gen: 1574351</td>
</tr>
<tr>
<td></td>
<td>enc: 652470</td>
<td>enc: 1146021</td>
<td>enc: 1779192</td>
</tr>
<tr>
<td></td>
<td>dec: 620946</td>
<td>dec: 1094314</td>
<td>dec: 1708692</td>
</tr>
</tbody>
</table>
What are we benchmarking, really?

• More than 50% of the cycles are spent in Keccak
 • Many conservative choices in FO transform
 • Use SHAKE-128 to as XOF
 • Generally, Keccak is not very fast in software
What are we benchmarking, really?

- More than 50% of the cycles are spent in Keccak
 - Many conservative choices in FO transform
 - Use SHAKE-128 to as XOF
 - Generally, Keccak is not very fast in software
- Long-term solution: hardware-accelerated Keccak
What are we benchmarking, really?

- More than 50% of the cycles are spent in Keccak
 - Many conservative choices in FO transform
 - Use SHAKE-128 to as XOF
 - Generally, Keccak is not very fast in software
- Long-term solution: hardware-accelerated Keccak
- Short-term problem:
 - Benchmarks of lattice-based KEMs are really benchmarks of symmetric crypto
 - Risk to make wrong decision about lattice design from “symmetrically tainted” benchmarks
What are we benchmarking, really?

- More than 50% of the cycles are spent in Keccak
 - Many conservative choices in FO transform
 - Use SHAKE-128 to as XOF
 - Generally, Keccak is not very fast in software
- Long-term solution: hardware-accelerated Keccak
- Short-term problem:
 - Benchmarks of lattice-based KEMs are really benchmarks of symmetric crypto
 - Risk to make wrong decision about *lattice* design from “symmetrically tainted” benchmarks
- Maybe just a small problem, because lattice-based KEMs are all fast enough
What are we benchmarking, really?

- More than 50% of the cycles are spent in Keccak
 - Many conservative choices in FO transform
 - Use SHAKE-128 to as XOF
 - Generally, Keccak is not very fast in software
- Long-term solution: hardware-accelerated Keccak
- Short-term problem:
 - Benchmarks of lattice-based KEMs are really benchmarks of symmetric crypto
 - Risk to make wrong decision about lattice design from "symmetrically tainted" benchmarks
- Maybe just a small problem, because lattice-based KEMs are all fast enough
- Better to decide based on
 - size/bandwidth
 - RAM/ROM footprint and gate count in HW
 - simplicity
 - how conservative designs are
 - cost of SCA protection
90s crypto (AES, SHA-2) is accelerated in HW!
Kyber-90s performance (Haswell cycles)

<table>
<thead>
<tr>
<th></th>
<th>Kyber512 ($k = 2$, level 1)</th>
<th>Kyber-90s cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyber cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gen:</td>
<td>29100</td>
<td>15792</td>
</tr>
<tr>
<td>enc:</td>
<td>46196</td>
<td>26612</td>
</tr>
<tr>
<td>dec:</td>
<td>39410</td>
<td>22248</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Kyber768 ($k = 3$, level 3)</th>
<th>Kyber-90s cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyber cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gen:</td>
<td>57340</td>
<td>25632</td>
</tr>
<tr>
<td>enc:</td>
<td>78692</td>
<td>39976</td>
</tr>
<tr>
<td>dec:</td>
<td>68620</td>
<td>33744</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Kyber1024 ($k = 4$, level 5)</th>
<th>Kyber-90s cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyber cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gen:</td>
<td>81244</td>
<td>38164</td>
</tr>
<tr>
<td>enc:</td>
<td>109584</td>
<td>57280</td>
</tr>
<tr>
<td>dec:</td>
<td>97280</td>
<td>50360</td>
</tr>
</tbody>
</table>
https://pq-crystals.org/kyber