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Motivation



Constant search for
smaller crypto-hardware

e Proliferation of embedded smart

EfﬁCienCV Of Loglc Mlnlmlzatlon devices for the Internet-of-Things.
Techniques for Cryptographic < Eentire device is required to
Hardware o Fit in a small form factor.

O Be energy-efficient.

e Small area budget for security.



Boolean Representation of a Cryptographic Function

d as AND/XOR/NOT
momiat | ate of hardware as

T4 = T3 A~ D
S =T2 & T4

pared to abstract input-output
relationship.

Easy to factor out redundant sub-
expressions.




/" Expectation .

/ Fewer logic gates \
\‘\ ,” tional architectures. To the authors kﬁowledge the gate count of 48 ,’I SpECIa lized \‘
N Smaller / AND/ 62 XOR is the iowest one rseported in techmcal l1terature for i Tools to '
. hardware .-~ ) \ minimize
e .-~ gatecount
~/ Gatecount -~
scheme using a smaller number of AND and XOR gates than in ! used to \\ s -
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e compare ; e Record-setting gate count for
. crypto designs cryptographic primitives.
For matrix U, the smallest circuits we found had 23 & gates. Among *, /,’
the many such circuits, the shortest ones have depth 7. It is worthwhile 7 e Cost function
e Gate count or logical depth
timal implem;entation. Hére, the efficiency of the mulﬁplication is me:'zl- ° Designed by Boyar Peralta et

sured in terms of the number of XOR operations needed to implement
the multiplication. Whlle our resu]ts are potentla,]]y of larger interest, we

al.



Boolean Logic to hardware

® Logical expressions are mapped onto
a library of “standard cells”.

Generic Boolean

Efficiency of Logic Minimization l
Techniques for Cryptographic
Hardware

Standard Cell
AND-OR-Invert
Standard Cell OR-AND-Invert

e Many possible hardware solutions for a
single Boolean expression.

e Choosing the final design is driven by trade-
offs between technology cost factors.



Technology Cost Factors

* Each cell incurs non-zero Delay before its :D_{
output reflects a change in inputs.

* Each cell comes with a specific Drive Strength, Drive strength: X1 Drive strength: X4
i.e. ability to drive Iogic atits output. Smaller, Slower, less power  Bigger, Faster, More power

* Area and Power efficiency often come at the expense of performance.

Typical Area-delay trade-off

A

High-speed
Fastest and regios

largest solution

Minimal-area
region

Area

/ Slowest and

smallest solution
Delay

Pareto Optimal
solution



Our Contributions

e Circuit-level analysis of low-gate-count (LGC) circuits

o Evaluation of LGC designs with widely-used benchmarks for same function, including
abstract and algebraically minimized versions.

o Factor the area-performance trade-off -comparing alternatives over multiple frequencies.
o Analyze the impact of ASIC implementation flow on LGC circuits.

m Technology-independent - Gate count

m Post-synthesis - Impact of logic transformation and mapping

m Post-layout - Impact of physical design
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Evaluation of logic-
minimized circuits

i i



Analysis Methodology

Benchmark Selection Benchmarks
oo " AESSBox . - :
Evaluati EABmeIeZea i liog Wrarpers . Binary Polynomial Multipliers - 8 to 22 bits
- Loc wr *  GF (28 and GF (26) Multipliers
_— Pelorence *  GF(28)inverter
QES/ Conetiat . Reed-Solomon Encoder
N

. Standard and Lightweight AES designs

ASIC Design Flow

| Batch ‘
synthesis |

N

echnology Library
(180nm, 32nm)

iming constraints, quality
metric report generation
(TCL scripts)

Physical standard
cell layout
Placement & Routing
Synopsys IC Compiler Post-layout
netlist
Ne——r
Delays
y \

Annotate
m parasitics

Modelsim Power analysis
Synopsys PrimeTime

Logic synthesis
Synopsys Design
Compiler

Gate-level
Netlist

Verilog

Testbenches

Area-Delay
Analysis

Post-synthesis

Post-layout
Evaluation

Evaluation

Power analysis
Synopsys PrimeTime,

Batch
Simulation
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Step 1: Analyzing the Impact of Logic Synthesis

e Benchmark 1 : AES SBox

e Design Alternatives
o Look-Up Table
o Canright SBox - Compact SBox using algebraic simplification
o LGC SBox - Minimized by LGC tool

e Technology-independent Comparison

Logical gate count of SBox designs Logical Depth of SBox designs
1500 40

30
1000

20
500

Logical gate count

125 180 10

0 0
LuUT LGC CANRIGHT LUT LGC CANRIGHT



POSt-SyntheSIS Area of SBox dESIgnS e Abstract LUT SBox is easily collapsed into

fewer levels of gates on hardware.

LUT and LGC SBoxes - Area (K Gate Eq.) vs Delay o LUT: 33 levels (initial) = 14 (post-synthesis)

® sbox_lut * sbox_Ige 4 sbox_canright o LGC: 17 levels (initial) = 18 (post-synthesis)

Fewer, smaller cells on critical path of LUT

: Area of LGC designs SBox.
T s blows up sooner e High XOR-dominance of LGC SBox
w0 N
‘E’ 06 . O XOR cell is 2-2.5x bigger than other cells.
< LUT design reaches
o4 higher speeds !

Area of common Standard cells - 180 nm technology

B Drive Strength - X1 ® Drive Strength - X2 Drive Strength - X4

Delay (ns)

Minimal-Area 50% smaller 20% smaller

Area (sg. um)

14 High-Speed 40% larger 25% larger




Post-synthesis Area of SBox designs Inserting a pipeline stage

e Pipelining shortens critical path.

o Easier to meet timing.
LUT and LGC SBoxes - Area (K Gate Eq.) vs Delay

o Cells can be smaller.
® shox_lut « shox_Igc 4 shox_canright * sbox_lgc- Pipelined 4 sbox_canright - Pipelined

0.8

Critical Path

Area (KGE)

6
Pipelining arrests

area blow-up Insert pipeline

0.4 registers

Delay (ns)

L

Critical Path L Critical Path
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Post-synthesis Area of SBox designs Observations

e Smaller fanout per gate — Smaller

LUT and LGC SBoxes - Area (K Gate Eq.) vs Delay increase in area after pipelining'

® sbox_lut * sbox_lgc 4 sbox_canright * sbox_lgc - Pipelined 4 sbox_canright - Pipelined (] LGC designs - Small fanout per gate.
o LGC: ~1.7
o LUT: ~25

Minimal-Area 50% smaller 20% smaller

Area (KGE)

High-Speed 40% larger 25% larger

High-Speed + 15% 10-15% larger
Delay (ns) (with pipeline)
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Post-synthesis Power of SBox designs --_

Minimal-Area 15-20% lower 30% lower

High-Speed 30-45% higher  15-20% higher
LUT and LGC SBox - Power vs Delay

® shox_lut * shox_lgc 4 sbox_canright * sbox_lgc- Pipelined 4 sbox_canright - Pipelined Hi_gh'S_pe_ed 20-30% higher 10-20% higher
(with pipeline)
4
g e LUT SBox is more power-efficient.
5
g 2 . . .
py e Pipelining LGC SBox does not
[=]
g improve its power-efficiency.
=3

4 6 8 10

Delay (ns)
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Impact of Logic Synthesis

Benchmark 2 : Binary Polynomial Multiplier

Design Alternatives
o  Matrix-Multiplier
o LGC Multiplier - Minimized by LGC tool

Technology-independent Comparison

Co

C1

C2n-2

2n-1

rows

Bit-parallel multiplier

n columns
agp 0 0 0
aj ag 0 0
an-1 ap-2 do
0 0 an-1

Generic Gate count - NXN Polynomial Multiplication
POLYMULT_LGC

Number of generic gates

= POLYMULT_MAT @ POLYMULT_COMP

2000
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0

8
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16

18

20

22

bo

by
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Post-synthesis area and power of Polynomial Multipliers

Polynomial Multiplier - Area vs Delay

4 polymult_mat, N=8
@ polymult_Igc, N=8

4 polymult_mat, N=16
@ polymult_lge, N=16

4 polymult_mat, N=22
@ polymult_lgc, N=22

Delay (ns)

Polynomial Multiplier - Power vs Delay

Average Power (mW)

10

8

6

Delay (ns)

4 polymult_mat, N=8

® polymult_lge, N=8

4 polymuli_mat, N=16
® polymult_lge, N=16

4 polymult_mat, N=22
® polymult_lge, N=22

Area-efficiency of LGC multipliers is lost at high speeds, and the difference worsens with increase in N.

Power-efficiency of LGC multipliers is lost for all N > 14, regardless of speed.

In short, a matrix multiplier “scales” better with multiplier size.
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Regularity in structure of a matrix multiplier

e Area Efficiency

o Symmetric and regular structure - easily collapsed into fewer levels
during optimization.

o Effect of optimization more pronounced with increase in speed and
multiplier width.

e Power Efficiency

o  Both Matrix and LGC multipliers are XOR-dominant, but matrix is
power-efficient due to more balanced gate delays.

AND-array

XOR-array

S Nl

=

=

a1
b[Ha*D_
az
r—b )|
ag
Pir-4)

ai,“;“’:lg}

f0[N-3
bz

B2y
by
N1}

bg

-1

=

Pin-3)
AiN-2)
bov B
-1
fliN-2)
(N-1}
fiN-1) :D_
Pin-2)

fiN-1)
1) [
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Step 2: Impact of Physical Design

e For large differences in logical gate count, differences in post-layout area of circuits closely follows
those of their post-synthesis versions.

e When designs have small differences in gate count, post-synthesis results are liable to be
flipped.

e Examples: LGC and Canright SBox, LGC and Matrix multipliers for small N.

SBox Post-synthesis Area (K Gate Eq.) vs Delay SBox Post-layout Area (K Gate Eq.) vs Delay
® shox_lut * shox_lgc 4 sbox_canright * shox_lgc - Pipelined 4 sbox_canright - Pipelined ® sbhox_lut * shox_Igc a sbox_canright * sbox_lgc- Pipelined & sbox_canright - Pipelined
2 0.8

1.5

0
3 4 5 6 7 8 )
Delay (ns) Delay (ns)

After synthesis - LGC 20% smaller than Odilright After place&route - LGC 20% biggHethbarChdTight

Area (KGE)
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How well are logical metrics related to hardware quality metrics?

Correlation of logical gate count to hardware area.

SBox - Correlation of Logical Gate Count to Area
0.9

0.85
0.8

0.75

Correlation to Area

0.7

0.65
3 4 5 6 7

Delay (ns)

Polynomial Multiplier - Correlation of Logical Gate Count to Area
® N=8 @ N=12 ® N=16 ® N=20 ® N=22

0.5

c

]

© 0

® "
S

O o5

,‘I ¥V P, 1
2 3 a4 5

Delay (ns)

Correlation of logical gate count to power.

SBox - Correlation of Logical Gate Count to Power
1

0.5

-0.5

Correlation to Area

3 4 5 6 7

Delay (ns)

Polynomial Multiplier - Correlation of Logical Gate Count to Power

® N=8 @ N=12 N=16 @ N=20 ® N=22

1 ® L4

L ]

Correlation

Delay (ns) 22



23
Integrated Design Example

e Different SBox circuits integrated into AES designs
o Demonstrate impact of logical-minimization in practical context.

o Effect of combined optimization of crypto-primitive with external logic.

Lightweight AES

e AES Design Alternatives l
I

O Sta n d d rd Ve rs i on |B}1a|B}1a |Byl'le |B}1e |B}15 |B}r'15 |B}15 |B}15 |Byl1e |By15 |Byle |By1a |By15 |Byle |By1e |By1e |

.’ i CT T T T T T T LlﬁJJ
m SBox for each byte of State and Key \_W

Expansion - 20 SBoxes in total ' ]

Shift Rows ]

[1111

Mix columns

O High-throughput

m Two AES rounds in single cycle - @
40 SBoxes in total

( Add Round Key )

External
C yrial

o Lightweight loglc

m Shared SBoxes - 4 in total




Post-synthesis Area of AES designs

Standard 12-32% smaller 7-13% smaller

Correlation of SBox Logical Cell Count to AES Area
) ) ) Minimal-Area  High-Throughput  18-33% smaller  5-13% smaller
A Standard % High-throughput Lightweight

1
0.5 Standard 9-16% smaller 6-14% smaller
M High-Speed High-Throughput ~ 11-19% smaller ~ 1-7% smaller

0
Q’R Lightweight 9% smaller + 5%
-0.5

-1

Lightweight 8% smaller 4-8% smaller

Correlation

100 125 150 175 200 e Comparison of cryptographic primitives

Frequency (MHz) requires context.

e Benefits of LGC SBox diminish for a
lightweight version of AES.

At high frequencies, correlation increases due to
effects of pipelining LGC designs.
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Summary of correlation analysis

SBox H

Polynomial N<14 H

Multiplier N> 14 H

GF Multiplier M

GF Inverter M
Standard H

AES High-throughput H
Lightweight M

SBox M

Polynomial N<14 _

Multiplier N> 14 _

GF Multiplier H H - High correlation (>0.8)

GF Inverter R M-Moderate Correlation(0.5-0.8)
Standard H

N High-throughput " L-Low Correlation (<0.5)
Lightweight M -> indicates change in level of correlation
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Conclusions from analysis of combinatorial primitives
e Conduciveness of a design to logic optimization is not well-quantified by logical
metrics.

o Abstract designs are more flexible towards optimization.

e Use of logical metrics to estimate hardware quality depends on circuit speed.
o Low Speed - Logical gate count is a good predictor of area only.

o High speed - There is no correlation between gate count and hardware quality.
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Thank youl!
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Technology Cost Factors

* Area and Power efficiency often come at the expense of performance.

Typical Area-delay trade-off

High—speeJ

Fastest and regiag
largest solution

Area-delay trade-off present due to both “sizing”
and logic modification.

Area-Performance trade-off - AES SBox
@ Only Cell Sizing & Cell Sizing and logic modification

1

Minimal-area

: 0.8
s region o
o ©
< x 06
[15]
]
< 04 ‘\.\0\.—.
/ Slowest and 0.2
Delny > smallest solution 4 6 8 10
Pareto Optimal Delay (ns)

solution



Reasons for lower power-efficiency of LGC SBox

in[0]

in[1]

in[2]

Flip in[1]
———

ROM-structure of LUT SBox results in few active
cells per computation.

in[O]

in[1]

in[2]

E Active

2.5x more cells in LUT SBox, but only 5-10% more toggles per computation. Why?

XOR gates are transparent to dynamic hazards.
A Y
B

Delay on one input causes an extra toggle.

Bigger cells in SBox LGC to meet timing - Each toggle of LGC SBox is more expensive.
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Impact of Logic Synthesis

Benchmark 2 : Binary Polynomial Multiplier

Technology-independent Comparison

Number of logic levels - NXN Polynomial Multiplication
= POLYMULT_COMP @ POLYMULT_LGC 4 POLYMULT_MAT

14
w
T 12
2
2 10
o
i) 8
3
5 ° /—A—H—A—A—A—/_‘_‘_H_‘
=
=
4
8 10 12 14 16 18 20 22

Gates with unbalanced input delays

Number of XOR cells with unbalanced input delays

400 * polymult_mat, N=8
* polymult_lgc, N=8

» 300 4 polymult_mat, N=16
& 4 polymult_lgc, N=16
a4
2 200 ® polymult_mat, N=22
3 = polymult_lge, N=22
g
E 100 A A
z = -
A A A e A 'y
0
2 4 6 8 10
Delay (ns)
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Post-synthesis Power of AES designs

Standard 12-25% higher 12-21% lower
Correlation of SBox Logical Cell Count to AES Power Minimal-Area  High-Throughput ~ 30-40% higher ~ 15% lower
A Standard x High_throthpUt Lightweight Lightweight 20-25% higher 12-18% lower
‘] BN
Standard 5-20% lower 5-10% lower
0.5
< High-Speed High-Throughput ~ 5-15% lower 5% lower
S—EU Lightweight 30% lower ~10% lower
o]
(&)
100 125 150 175 200 Low correlation of gate count to power - toggling

Frequency (MHz)

properties not well-captured by logical metrics.
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Post-Layout results

Polynomial Multiplier - Area

8x8 Polynomial Multiplier - Post-layout Area (K Gate Eq.) vs Delay

* polymult_mat, N=8 * polymult_Igc, N=8

Area (KGE)
o
N
]

0.2

Delay (ns)

Polynomial Multiplier Post-layout Area (K Gate Eq.) vs Delay

Area (KGE)

4
3
2
+ + ry
! \qzslfl—l—l
S T " e e -
0
4 6 8 10
Delay (ns)

* polymult_mat, N=8

* polymult_lgc, N=8

m polymult_comp, N=16
m polymult_mat, N=16
m polymult_lgc, N=16

4 polymult_comp, N=22
A polymult_mat, N=22
4 polymult_Ige, N=22
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Post-Layout results

SBox - Power Polynomial Multiplier- Power

Poynomial Multiplier - Post-layout Power vs Delay

SBox Post-layout Power vs Delay 0.008 + polymult mat, g

0.002 ® sbox_lut * polymult_lgc, N=8
* shox_lgc 4 polymult_mat, N=16
L 0.006
4 shox_lgc - pipelined 4 polymult_Igc, N=16
. 0.0015 T ® polymult_mat, N=22
2 < 0.004 ® polymult_lge, N=22
£ 0001 .
0.002
0.0005 0 — * *
4 6 8 10 4 6 8 10
Delay (ns) Delay (ns)
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SBox - Correlation of Logical Depth to Area and Power

@ Correlation to Area @ Correlation to Power

Correlation

Delay (ns)

GF Multipliers - Correlation between Logical Depth and Area/Power

® Correlation with Power @ Correlation with Area

0.9
s 08
5
2 07
[=]
o

0.6

0.5

2.25 2.5 2.75 3 3.25 3.5 3.75
Delay (ns)

Correlation of logical depth to hardware metrics

Polynomial Multiplier - Correlation of Logical Depth to Area
® N=8 ® N=12 ® N=16 ® N=20 ® N=22

0.5

0
-0.5 \v\k \ ;
-1 - & &
2.5 3 3.5 4 4.5 5

Delay (ns)

Correlation

Polynomial Multiplier - Correlation of Logical Depth to Power

® N=8 @ N=12 ® N=16 @ N=20 @ N=22

L
L ]

0.5
s,
2
B 0
<
8 05
-1 8 )
2 3 4 5
Delay (ns)
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Lightweight AES Designs - Area and Power

Lightweight AES - Area vs Throughput Lightweight AES - Area vs Throughput

20 ® aesd_lut 20 ® aes4_|ut

18 4 aesd_lgc 18 4 ges4_lgc

16 * aesd_canright 16 * aesd_canright
g g 4 ges4_|gc - pipelined
= 4 = 4 * aes4_canright -
o o pipelined
= 12 = 12

10 10

8 8
1 2 3 4 1 2 3 4
Throughput (M Encryptions per sec) Throughput (M Encryptions per sec)
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