Dumbo, Jumbo, and Delirium: Parallel AEAD for the Lightweight Circus

Tim Beyne1, Yu Long Chen1, Christoph Dobraunig2, Bart Mennink2

1 KU Leuven (Belgium) \quad 2 Radboud University (The Netherlands)

NIST Lightweight Cryptography Workshop 2019
November 6, 2019
Authenticated Encryption

Encryption

No outsider can learn anything about data

Authentication

No outsider can manipulate data

Authenticated Encryption

A

B

2 / 14
Authenticated Encryption
Authenticated Encryption

Encryption

- No outsider can learn anything about data
Authenticated Encryption

Encryption
- No outsider can learn anything about data

Authentication
- No outsider can manipulate data
Authenticated Encryption

- Ciphertext C encryption of message M
- Tag T authenticates associated data A and message M
Authenticated Encryption

- Ciphertext C encryption of message M
- Tag T authenticates associated data A and message M
- Nonce N randomizes the scheme
Authenticated Decryption

- Authenticated decryption needs to satisfy that
 - Message disclosed if tag is correct
 - Message is not leaked if tag is incorrect
Authenticated Decryption

- Authenticated decryption needs to satisfy that
 - Message disclosed if tag is **correct**
 - Message is not leaked if tag is **incorrect**
Authenticated Decryption

- Authenticated decryption needs to satisfy that
 - Message disclosed if tag is correct
 - Message is not leaked if tag is incorrect
- Correctness: $AD_k(N, A, AE_k(N, A, M)) = M$
Our goal: minimize state size and complexity of design while still meeting expected security strength and limit on online complexity by 50 bytes.

Lightweight Authenticated Encryption

nonce-based? suitable primitive

RUP/LR/...? math beyond primitive

hardware/software parallelism
Our goal: minimize state size and complexity of design while still meeting expected security strength 2^{112} and limit on online complexity 2^{50} bytes.
What Primitive?

- **Tweakable Block Cipher**
- **Block Cipher**
- **Permutation**
What Primitive?

Tweakable Block Cipher Block Cipher Permutation

Permutation is the best suited choice
What Mode?

Established Approach

- Keyed duplex/sponge
 [BDPV11, MRV15, DMV17]
- Inherently sequential
What Mode?

Established Approach

- Keyed duplex/sponge
 [BDPV11,MRV15,DMV17]
- Inherently sequential

Our Approach

- Parallel evaluation of the permutation
 \(\rightarrow \) requires proper masking
- Evaluating it in forward direction only
 \(\rightarrow \) requires proper mode of use
- Goal: minimize permutation size
What Mask?

Simplified Version of MEM [GJMN16]

- φ_1 is fixed LFSR, $\varphi_2 = \varphi_1 \oplus \text{id}$
- $\text{mask}^{a,b}_K = \varphi_2^b \circ \varphi_1^a \circ P(K||0^{n-k})$
What Mask?

Simplified Version of MEM [GJMN16]

- φ_1 is fixed LFSR, $\varphi_2 = \varphi_1 \oplus \text{id}$
- ${\text{mask}}_{K}^{a,b} = \varphi_2^b \circ \varphi_1^a \circ P(K\|0^{n-k})$

Features

- Constant-time
- Simple to implement
- More efficient than alternatives
Elephant Authenticated Encryption Mode

\[\text{mask}_{K}^{a,b} = \varphi_2^b \circ \varphi_1^a \circ P(K\|0^{n-k}) \]

\[\begin{align*}
\text{mask}_{K}^{0,0} & \rightarrow P \\
M_1 & \rightarrow C_1 \\
\ldots & \\
M_{\ell_M} & \rightarrow C_{\ell_M}
\end{align*} \]

\[\begin{align*}
\text{mask}_{K}^{0,1} & \rightarrow P \\
\text{mask}_{K}^{0,2} & \rightarrow P \\
\ldots & \\
\text{mask}_{K}^{\ell_M-1,1} & \rightarrow P
\end{align*} \]

\[\cdot \cdot \cdot \rightarrow T \]
Elephant Authenticated Encryption Mode

\[\text{mask}_{K}^{a,b} = \varphi_{2}^{b} \circ \varphi_{1}^{a} \circ P(K||0^{n-k}) \]

Encryption

- Nonce \(N \) input to all \(P \) calls
- \(K \) and counter in mask
- Padding \(M_{1} \ldots M_{\ell_{M}} \leftarrow M \)
- Ciphertext \(C \leftarrow [C_{1} \ldots C_{\ell_{M}}]_{M} \)
Elephant Authenticated Encryption Mode

Encryption
- Nonce N input to all P calls
- K and counter in mask
- Padding $M_1 \ldots M_{\ell_M} \leftarrow^n M$
- Ciphertext $C \leftarrow [C_1 \ldots C_{\ell_M}]_M$

Authentication
- Padding $A_1 \ldots A_{\ell_A} \leftarrow^n N \| A \| 1$
- Padding $C_1 \ldots C_{\ell_C} \leftarrow^n C \| 1$
- K and counter in mask
- Tag T truncated to t bits
Elephant Authenticated Encryption Mode

\[\text{mask}_K^{a,b} = \varphi_2^b \circ \varphi_1^a \circ P(K||0^{n-k}) \]

Mode Properties

- Encrypt-then-MAC
 - CTR encryption
 - Wegman-Carter-Shoup
- Fully parallelizable
- Uses single primitive P
- P in forward direction only
Elephant Authenticated Encryption Mode

\[\text{mask}_{K}^{a,b} = \phi_{2}^{b} \circ \phi_{1}^{a} \circ \text{P}(K\|0^{n-k}) \]

Mode Properties

- Encrypt-then-MAC
 - CTR encryption
 - Wegman-Carter-Shoup
- Fully parallelizable
- Uses single primitive P
- P in forward direction only

Mask Properties

- Mask can be easily updated
Elephant Authenticated Encryption Mode

\[
\text{mask}_K^{a,b} = \varphi_2^b \circ \varphi_1^a \circ P(K\|0^{n-k})
\]

Mode Properties
- Encrypt-then-MAC
 - CTR encryption
 - Wegman-Carter-Shoup
- Fully parallelizable
- Uses single primitive \(P\)
- \(P\) in forward direction only

Mask Properties
- Mask can be easily updated
- \(\text{mask}_K^{i,0} = \varphi_1 \circ \text{mask}_K^{i-1,0}\)
Elephant Authenticated Encryption Mode

\[
\text{mask}^{a,b}_K = \varphi^b_2 \circ \varphi^a_1 \circ P(K\|0^{n-k})
\]

Mode Properties

- Encrypt-then-MAC
 - CTR encryption
 - Wegman-Carter-Shoup
- Fully parallelizable
- Uses single primitive P
- P in forward direction only

Mask Properties

- Mask can be easily updated
- \(\text{mask}^{i,0}_K = \varphi^i_1 \circ \text{mask}^{i-1,0}_K \)
- \(\text{mask}^{i-1,0}_K \oplus \text{mask}^{i-1,1}_K = \text{mask}^{i,0}_K \)
Security of Mode

\[\text{Adv}^\text{ae}_{\text{Elephant}}(\mathcal{A}) \lesssim \frac{4\sigma p}{2^n} \]

- \(\sigma \) is online complexity, \(p \) is offline complexity
- Assumptions:
 - \(P \) is random permutation
 - \(\varphi_1 \) has maximal length and \(\varphi^b_2 \circ \varphi^a_1 \neq \varphi^{b'}_2 \circ \varphi^{a'}_1 \) for \((a, b) \neq (a', b') \)
 - \(\mathcal{A} \) is nonce-based adversary
Security of Mode

\[\text{Adv}_{\text{Elephant}}^{\text{ae}}(A) \lesssim \frac{4\sigma p}{2^n} \]

- \(\sigma \) is online complexity, \(p \) is offline complexity
- Assumptions:
 - \(P \) is random permutation
 - \(\varphi_1 \) has maximal length and \(\varphi_2^b \circ \varphi_1^a \neq \varphi_2^{b'} \circ \varphi_1^{a'} \) for \((a, b) \neq (a', b') \)
 - \(A \) is nonce-based adversary

Parameters of NIST lightweight call can be met with a 160-bit permutation!
Instantiation

- Spongent-π\([160]\]
- Minimalist design
 - Time complexity \(2^{112}\)
 - Data complexity \(2^{46}\)
Instantiation

Dumbo
- Spongent-$\pi[160]$
- Minimalist design
 - Time complexity 2^{112}
 - Data complexity 2^{46}

Jumbo
- Spongent-$\pi[176]$
- Conservative design
 - Time complexity 2^{127}
 - Data complexity 2^{46}
- ISO/IEC standardized
Instantiation

Dumbo
- Spongent-\(\pi\)[160]
- Minimalist design
 - Time complexity \(2^{112}\)
 - Data complexity \(2^{46}\)

Jumbo
- Spongent-\(\pi\)[176]
- Conservative design
 - Time complexity \(2^{127}\)
 - Data complexity \(2^{46}\)
- ISO/IEC standardized

Delirium
- Keccak-\(f\)[200]
- High security
 - Time complexity \(2^{127}\)
 - Data complexity \(2^{70}\)
- NIST standardized
Technical Specification of Instances

instance	k	m	n	t	P	φ_1	expected	limit on online
----------	------	------	------	------	----------------------------------	-----------------------	security strength	complexity
Dumbo	128	96	160	64	80-round Spongent-$\pi[160]$	φ_{Dumbo}	2^{112}	$2^{50}/(n/8)$
Jumbo	128	96	176	64	90-round Spongent-$\pi[176]$	φ_{Jumbo}	2^{127}	$2^{50}/(n/8)$
Delirium	128	96	200	128	18-round Keccak-$f[200]$	$\varphi_{\text{Delirium}}$	2^{127}	$2^{74}/(n/8)$

- All LFSRs operate on 8-bit words:
 - $\varphi_{\text{Dumbo}}: (x_0, \ldots, x_{19}) \mapsto (x_1, \ldots, x_{19}, x_0 \lll 3 \oplus x_{3} \lll 7 \oplus x_{13} \ggg 7)$
 - $\varphi_{\text{Jumbo}}: (x_0, \ldots, x_{21}) \mapsto (x_1, \ldots, x_{21}, x_0 \lll 1 \oplus x_{3} \lll 7 \oplus x_{19} \ggg 7)$
 - $\varphi_{\text{Delirium}}: (x_0, \ldots, x_{24}) \mapsto (x_1, \ldots, x_{24}, x_0 \lll 1 \oplus x_{2} \lll 1 \oplus x_{13} \lll 1)$

- All have maximal length and $\varphi_{b}^{b} \circ \varphi_{a}^{a} \neq \varphi_{b}^{b'} \circ \varphi_{a}^{a'}$ for $(a, b) \neq (a', b')$
Conclusion

Elephant
- Parallel lightweight AE with small state
- Mode: provably secure in random permutation model
- Primitives: standardized and well-studied
- Dumbo and Jumbo for hardware
- Delirium for software

Thank you for your attention!