
FrodoKEM 
practical quantum-secure key encapsulation 

from generic lattices 

Erdem Alkim Joppe W. Bos Léo Ducas Patrick Longa 

Ilya Mironov Michael Naehrig Valeria Nikolaenko 

Chris Peikert Ananth Raghunathan Douglas Stebila 

1 / 11 



FrodoPKE
(IND-CPA)

FrodoKEM
(IND-CCA)

[FujisakiOkamoto’99,HHK’17]

(generic transform)

Concrete Instantiations

1 FrodoKEM-640: targets Level 1 security (≥ AES-128)

2 FrodoKEM-976: targets Level 3 security (≥ AES-192)

3 FrodoKEM-1344 (new, round 2): Level 5 security (≥ AES-256)

FrodoKEM 

FrodoKEM’s security derives from plain Learning With Errors 

on algebraically unstructured lattices, 

parameterized cautiously to avoid known risk categories, 

and to conform to a worst-case/average-case reduction. 

2 / 11 



FrodoPKE
(IND-CPA)

FrodoKEM
(IND-CCA)

[FujisakiOkamoto’99,HHK’17]

(generic transform)

Concrete Instantiations

1 FrodoKEM-640: targets Level 1 security (≥ AES-128)

2 FrodoKEM-976: targets Level 3 security (≥ AES-192)

3 FrodoKEM-1344 (new, round 2): Level 5 security (≥ AES-256)

FrodoKEM 

FrodoKEM’s security derives from plain Learning With Errors 

on algebraically unstructured lattices, 

parameterized cautiously to avoid known risk categories, 

and to conform to a worst-case/average-case reduction. 

2 / 11 



FrodoPKE
(IND-CPA)

FrodoKEM
(IND-CCA)

[FujisakiOkamoto’99,HHK’17]

(generic transform)

Concrete Instantiations

1 FrodoKEM-640: targets Level 1 security (≥ AES-128)

2 FrodoKEM-976: targets Level 3 security (≥ AES-192)

3 FrodoKEM-1344 (new, round 2): Level 5 security (≥ AES-256)

FrodoKEM 

FrodoKEM’s security derives from plain Learning With Errors 

on algebraically unstructured lattices, 

parameterized cautiously to avoid known risk categories, 

and to conform to a worst-case/average-case reduction. 

2 / 11 



Concrete Instantiations

1 FrodoKEM-640: targets Level 1 security (≥ AES-128)

2 FrodoKEM-976: targets Level 3 security (≥ AES-192)

3 FrodoKEM-1344 (new, round 2): Level 5 security (≥ AES-256)

FrodoKEM 

FrodoKEM’s security derives from plain Learning With Errors 

on algebraically unstructured lattices, 

parameterized cautiously to avoid known risk categories, 

and to conform to a worst-case/average-case reduction. 

FrodoPKE 
(IND-CPA) 

[FujisakiOkamoto’99,HHK’17] 

(generic transform) 

FrodoKEM 
(IND-CCA) 

2 / 11 



FrodoKEM 

FrodoKEM’s security derives from plain Learning With Errors 

on algebraically unstructured lattices, 

parameterized cautiously to avoid known risk categories, 

and to conform to a worst-case/average-case reduction. 

FrodoPKE 
(IND-CPA) 

[FujisakiOkamoto’99,HHK’17] 

(generic transform) 

FrodoKEM 
(IND-CCA) 

Concrete Instantiations 
1 FrodoKEM-640: targets Level 1 security (≥ AES-128) 

2 FrodoKEM-976: targets Level 3 security (≥ AES-192) 

3 FrodoKEM-1344 (new, round 2): Level 5 security (≥ AES-256) 

2 / 11 



breaking random inputs =⇒ solving famous problems on any lattice.

“[This] assures us that attacks on the cryptographic construction
are likely to be effective only for small choices of parameters and not
asymptotically. In other words . . . there are no fundamental flaws in the
design of our cryptographic construction.” [MicciancioRegev’09]

I LWE has been heavily used and cryptanalyzed by countless works.

Public-Key Encryption/Key Exchange

I Many schemes with tight (CPA-)security from LWE:
[Regev’05,PVW’08,GPV’08,P’09,LP’11,. . . ]

I FrodoCCS [BCDMNNRS’16] instantiated and implemented [LP’11], using
pseudorandom public matrix A to reduce public key size.

I FrodoPKE/KEM [this work]: wider error, new params, CCA security

Pedigree 
Learning With Errors (LWE) [Regev’05] 
I Lineage of [Ajtai’96,AjtaiDwork’97]: worst-case/average-case reductions: 

3 / 11 



“[This] assures us that attacks on the cryptographic construction
are likely to be effective only for small choices of parameters and not
asymptotically. In other words . . . there are no fundamental flaws in the
design of our cryptographic construction.” [MicciancioRegev’09]

I LWE has been heavily used and cryptanalyzed by countless works.

Public-Key Encryption/Key Exchange

I Many schemes with tight (CPA-)security from LWE:
[Regev’05,PVW’08,GPV’08,P’09,LP’11,. . . ]

I FrodoCCS [BCDMNNRS’16] instantiated and implemented [LP’11], using
pseudorandom public matrix A to reduce public key size.

I FrodoPKE/KEM [this work]: wider error, new params, CCA security

Pedigree 
Learning With Errors (LWE) [Regev’05] 
I Lineage of [Ajtai’96,AjtaiDwork’97]: worst-case/average-case reductions: 

breaking random inputs =⇒ solving famous problems on any lattice. 

3 / 11 



I LWE has been heavily used and cryptanalyzed by countless works.

Public-Key Encryption/Key Exchange

I Many schemes with tight (CPA-)security from LWE:
[Regev’05,PVW’08,GPV’08,P’09,LP’11,. . . ]

I FrodoCCS [BCDMNNRS’16] instantiated and implemented [LP’11], using
pseudorandom public matrix A to reduce public key size.

I FrodoPKE/KEM [this work]: wider error, new params, CCA security

Pedigree 
Learning With Errors (LWE) [Regev’05] 
I Lineage of [Ajtai’96,AjtaiDwork’97]: worst-case/average-case reductions: 

breaking random inputs =⇒ solving famous problems on any lattice. 
“[This] assures us that attacks on the cryptographic construction 

are likely to be effective only for small choices of parameters and not 
asymptotically. In other words . . . there are no fundamental flaws in the 
design of our cryptographic construction.” [MicciancioRegev’09] 

3 / 11 



Public-Key Encryption/Key Exchange

I Many schemes with tight (CPA-)security from LWE:
[Regev’05,PVW’08,GPV’08,P’09,LP’11,. . . ]

I FrodoCCS [BCDMNNRS’16] instantiated and implemented [LP’11], using
pseudorandom public matrix A to reduce public key size.

I FrodoPKE/KEM [this work]: wider error, new params, CCA security

Pedigree 
Learning With Errors (LWE) [Regev’05] 
I Lineage of [Ajtai’96,AjtaiDwork’97]: worst-case/average-case reductions: 

breaking random inputs =⇒ solving famous problems on any lattice. 
“[This] assures us that attacks on the cryptographic construction 

are likely to be effective only for small choices of parameters and not 
asymptotically. In other words . . . there are no fundamental flaws in the 
design of our cryptographic construction.” [MicciancioRegev’09] 

I LWE has been heavily used and cryptanalyzed by countless works. 

3 / 11 



I FrodoCCS [BCDMNNRS’16] instantiated and implemented [LP’11], using
pseudorandom public matrix A to reduce public key size.

I FrodoPKE/KEM [this work]: wider error, new params, CCA security

Pedigree 
Learning With Errors (LWE) [Regev’05] 
I Lineage of [Ajtai’96,AjtaiDwork’97]: worst-case/average-case reductions: 

breaking random inputs =⇒ solving famous problems on any lattice. 
“[This] assures us that attacks on the cryptographic construction 

are likely to be effective only for small choices of parameters and not 
asymptotically. In other words . . . there are no fundamental flaws in the 
design of our cryptographic construction.” [MicciancioRegev’09] 

I LWE has been heavily used and cryptanalyzed by countless works. 

Public-Key Encryption/Key Exchange 
I Many schemes with tight (CPA-)security from LWE: 

[Regev’05,PVW’08,GPV’08,P’09,LP’11,. . . ] 

3 / 11 



I FrodoPKE/KEM [this work]: wider error, new params, CCA security

Pedigree 
Learning With Errors (LWE) [Regev’05] 
I Lineage of [Ajtai’96,AjtaiDwork’97]: worst-case/average-case reductions: 

breaking random inputs =⇒ solving famous problems on any lattice. 
“[This] assures us that attacks on the cryptographic construction 

are likely to be effective only for small choices of parameters and not 
asymptotically. In other words . . . there are no fundamental flaws in the 
design of our cryptographic construction.” [MicciancioRegev’09] 

I LWE has been heavily used and cryptanalyzed by countless works. 

Public-Key Encryption/Key Exchange 
I Many schemes with tight (CPA-)security from LWE: 

[Regev’05,PVW’08,GPV’08,P’09,LP’11,. . . ] 

I FrodoCCS [BCDMNNRS’16] instantiated and implemented [LP’11], using 
pseudorandom public matrix A to reduce public key size. 

3 / 11 



Pedigree 
Learning With Errors (LWE) [Regev’05] 
I Lineage of [Ajtai’96,AjtaiDwork’97]: worst-case/average-case reductions: 

breaking random inputs =⇒ solving famous problems on any lattice. 
“[This] assures us that attacks on the cryptographic construction 

are likely to be effective only for small choices of parameters and not 
asymptotically. In other words . . . there are no fundamental flaws in the 
design of our cryptographic construction.” [MicciancioRegev’09] 

I LWE has been heavily used and cryptanalyzed by countless works. 

Public-Key Encryption/Key Exchange 
I Many schemes with tight (CPA-)security from LWE: 

[Regev’05,PVW’08,GPV’08,P’09,LP’11,. . . ] 

I FrodoCCS [BCDMNNRS’16] instantiated and implemented [LP’11], using 
pseudorandom public matrix A to reduce public key size. 

I FrodoPKE/KEM [this work]: wider error, new params, CCA security 
3 / 11 



Assumption: for uniformly random matrix A over Zq and S from χ,

[A , B ≈ SA]
c≡ uniform over Zq.

(Images courtesy xkcd.org)

LWE and FrodoPKE 
Learning With Errors 
I Dimension n, modulus q, error distribution χ on ‘small’ integers. 

4 / 11 



(Images courtesy xkcd.org)

LWE and FrodoPKE 
Learning With Errors 
I Dimension n, modulus q, error distribution χ on ‘small’ integers. 

Assumption: for uniformly random matrix A over Zq and S from χ, 

[A , B ≈ SA] 
c ≡ uniform over Zq. 

4 / 11 



(Images courtesy xkcd.org)

LWE and FrodoPKE 
Learning With Errors 
I Dimension n, modulus q, error distribution χ on ‘small’ integers. 

Assumption: for uniformly random matrix A over Zq and S from χ, 

[A , B ≈ SA] 
c ≡ uniform over Zq. 

Bounded-distance decoding on a random ‘q-ary’ lattice defined by A: 

(0, q) 

(q, 0) 

4 / 11 



C ≈ AR

C0 ≈ BR+ q
2 ·M

M ∈ {0, 1}k×`

C0 − SC ≈ q
2 ·M

(A,B,C,C0)
c≡ unif

LWE and FrodoPKE 
Learning With Errors 
I Dimension n, modulus q, error distribution χ on ‘small’ integers. 

Assumption: for uniformly random matrix A over Zq and S from χ, 

[A , B ≈ SA] 
c ≡ uniform over Zq. 

pk = seedA , B ≈ SA 
S ← χk×n 

(A = expand(seedA) ∈ Zn
q 
×n ) 

(Images courtesy xkcd.org) 4 / 11 

http:xkcd.org


C ≈ AR

C0 ≈ BR+ q
2 ·M

C0 − SC ≈ q
2 ·M

(A,B,C,C0)
c≡ unif

LWE and FrodoPKE 
Learning With Errors 
I Dimension n, modulus q, error distribution χ on ‘small’ integers. 

Assumption: for uniformly random matrix A over Zq and S from χ, 

[A , B ≈ SA] 
c ≡ uniform over Zq. 

pk = seedA , B ≈ SA 
S ← χk×n 

(A = expand(seedA) ∈ Zn
q 
×n ) 

M ∈ {0, 1}k×` 

(Images courtesy xkcd.org) 4 / 11 

http:xkcd.org


C0 − SC ≈ q
2 ·M

(A,B,C,C0)
c≡ unif

LWE and FrodoPKE 
Learning With Errors 
I Dimension n, modulus q, error distribution χ on ‘small’ integers. 

Assumption: for uniformly random matrix A over Zq and S from χ, 

[A , B ≈ SA] 
c ≡ uniform over Zq. 

pk = seedA , B ≈ SA 
S ← χk×n 

(A = expand(seedA) ∈ Zn
q 
×n ) 

C ≈ AR M ∈ {0, 1}k×` 
q C0 ≈ BR + 2 · M 

(Images courtesy xkcd.org) 4 / 11 

http:xkcd.org


(A,B,C,C0)
c≡ unif

LWE and FrodoPKE 
Learning With Errors 
I Dimension n, modulus q, error distribution χ on ‘small’ integers. 

Assumption: for uniformly random matrix A over Zq and S from χ, 

[A , B ≈ SA] 
c ≡ uniform over Zq. 

pk = seedA , B ≈ SA 
S ← χk×n 

(A = expand(seedA) ∈ Zn
q 
×n ) 

C ≈ AR 

C0 − SC ≈ q 
2 

M ∈ {0, 1}k×` 
C0 ≈ BR + q 

2 · M 

· M 

(Images courtesy xkcd.org) 4 / 11 

http:xkcd.org


LWE and FrodoPKE 
Learning With Errors 
I Dimension n, modulus q, error distribution χ on ‘small’ integers. 

Assumption: for uniformly random matrix A over Zq and S from χ, 

[A , B ≈ SA] 
c ≡ uniform over Zq. 

pk = seedA , B ≈ SA 
S ← χk×n 

(A = expand(seedA) ∈ Zn
q 
×n ) 

C ≈ AR 

C0 − SC ≈ q 
2 

M ∈ {0, 1}k×` 
C0 ≈ BR + q 

2 · M 

· M 

c 
(A, B, C, C0) ≡ unif 

(Images courtesy xkcd.org) 4 / 11 

http:xkcd.org


Distinctive Features of FrodoPKE/KEM 

1 Generic, algebraically unstructured lattices: plain LWE. 

(No algebraic ring structure for potential exploitation.) 

2 ‘Medium-sized’ errors conforming to a worst-case/average-case 
reduction from a previously studied lattice problem (BDD with DGS). 

3 Very simple design and constant-time implementation: 

F power-of-2 modulus q for cheap & easy modular arithmetic 
F straightforward error sampling 
F no ‘reconciliation’ or error-correcting codes for removing noise 
F x64 implementation: 256 lines of plain C code 

(+ preexisting symmetric primitives) 

5 / 11 



Distinctive Features of FrodoPKE/KEM 

1 Generic, algebraically unstructured lattices: plain LWE. 

(No algebraic ring structure for potential exploitation.) 

2 ‘Medium-sized’ errors conforming to a worst-case/average-case 
reduction from a previously studied lattice problem (BDD with DGS). 

3 Very simple design and constant-time implementation: 

F power-of-2 modulus q for cheap & easy modular arithmetic 
F straightforward error sampling 
F no ‘reconciliation’ or error-correcting codes for removing noise 
F x64 implementation: 256 lines of plain C code 

(+ preexisting symmetric primitives) 

5 / 11 



Distinctive Features of FrodoPKE/KEM 

1 Generic, algebraically unstructured lattices: plain LWE. 

(No algebraic ring structure for potential exploitation.) 

2 ‘Medium-sized’ errors conforming to a worst-case/average-case 
reduction from a previously studied lattice problem (BDD with DGS). 

3 Very simple design and constant-time implementation: 

F power-of-2 modulus q for cheap & easy modular arithmetic 
F straightforward error sampling 
F no ‘reconciliation’ or error-correcting codes for removing noise 
F x64 implementation: 256 lines of plain C code 

(+ preexisting symmetric primitives) 

5 / 11 



Medium-Sized Errors

Choosing an Error Distribution
I Narrower errors =⇒ smaller parameters q, n =⇒ better efficiency.

I But how narrow can the error distribution safely be?

Risk Category: Small Errors

1 LWE with O(1)-bounded error is poly(n)-time solvable [AG’11,ACFP’14]

given large-poly(n)-many samples. (PKEs don’t reveal this many!)

2 Prior worst-case hardness needs Gaussian error of σ >
√
n/(2π).

Or narrower error, but only for few LWE samples. (PKEs reveal more!)

=⇒ Sizeable gap between known-vulnerable and worst-case-hard params.

New Worst-Case Hardness
I A latent reduction from [R’05,PRS’17] works for our σ ≈ η(Z).

I Works for a bounded poly(n) number of LWE samples: covers PKEs!

6 / 11



Medium-Sized Errors

Choosing an Error Distribution
I Narrower errors =⇒ smaller parameters q, n =⇒ better efficiency.

I But how narrow can the error distribution safely be?

Risk Category: Small Errors

1 LWE with O(1)-bounded error is poly(n)-time solvable [AG’11,ACFP’14]

given large-poly(n)-many samples. (PKEs don’t reveal this many!)

2 Prior worst-case hardness needs Gaussian error of σ >
√
n/(2π).

Or narrower error, but only for few LWE samples. (PKEs reveal more!)

=⇒ Sizeable gap between known-vulnerable and worst-case-hard params.

New Worst-Case Hardness
I A latent reduction from [R’05,PRS’17] works for our σ ≈ η(Z).

I Works for a bounded poly(n) number of LWE samples: covers PKEs!

6 / 11



given large-poly(n)-many samples. (PKEs don’t reveal this many!)

2 Prior worst-case hardness needs Gaussian error of σ >
√
n/(2π).

Or narrower error, but only for few LWE samples. (PKEs reveal more!)

=⇒ Sizeable gap between known-vulnerable and worst-case-hard params.

New Worst-Case Hardness
I A latent reduction from [R’05,PRS’17] works for our σ ≈ η(Z).

I Works for a bounded poly(n) number of LWE samples: covers PKEs!

Medium-Sized Errors 
Choosing an Error Distribution 
I Narrower errors =⇒ smaller parameters q, n =⇒ better efficiency. 

I But how narrow can the error distribution safely be? 

Risk Category: Small Errors 

1 LWE with O(1)-bounded error is poly(n)-time solvable [AG’11,ACFP’14] 

6 / 11 



2 Prior worst-case hardness needs Gaussian error of σ >
√
n/(2π).

Or narrower error, but only for few LWE samples. (PKEs reveal more!)

=⇒ Sizeable gap between known-vulnerable and worst-case-hard params.

New Worst-Case Hardness
I A latent reduction from [R’05,PRS’17] works for our σ ≈ η(Z).

I Works for a bounded poly(n) number of LWE samples: covers PKEs!

Medium-Sized Errors 
Choosing an Error Distribution 
I Narrower errors =⇒ smaller parameters q, n =⇒ better efficiency. 

I But how narrow can the error distribution safely be? 

Risk Category: Small Errors 

1 LWE with O(1)-bounded error is poly(n)-time solvable [AG’11,ACFP’14] 

given large-poly(n)-many samples. (PKEs don’t reveal this many!) 

6 / 11 



Or narrower error, but only for few LWE samples. (PKEs reveal more!)

=⇒ Sizeable gap between known-vulnerable and worst-case-hard params.

New Worst-Case Hardness
I A latent reduction from [R’05,PRS’17] works for our σ ≈ η(Z).

I Works for a bounded poly(n) number of LWE samples: covers PKEs!

Medium-Sized Errors 
Choosing an Error Distribution 
I Narrower errors =⇒ smaller parameters q, n =⇒ better efficiency. 

I But how narrow can the error distribution safely be? 

Risk Category: Small Errors 

1 LWE with O(1)-bounded error is poly(n)-time solvable [AG’11,ACFP’14] 

given large-poly(n)-many samples. (PKEs don’t reveal this many!) 

2 Prior worst-case hardness needs Gaussian error of σ > 
√ 
n/(2π). 

6 / 11 



=⇒ Sizeable gap between known-vulnerable and worst-case-hard params.

New Worst-Case Hardness
I A latent reduction from [R’05,PRS’17] works for our σ ≈ η(Z).

I Works for a bounded poly(n) number of LWE samples: covers PKEs!

Medium-Sized Errors 
Choosing an Error Distribution 
I Narrower errors =⇒ smaller parameters q, n =⇒ better efficiency. 

I But how narrow can the error distribution safely be? 

Risk Category: Small Errors 

1 LWE with O(1)-bounded error is poly(n)-time solvable [AG’11,ACFP’14] 

given large-poly(n)-many samples. (PKEs don’t reveal this many!) 

2 Prior worst-case hardness needs Gaussian error of σ > 
√ 
n/(2π). 

Or narrower error, but only for few LWE samples. (PKEs reveal more!) 

6 / 11 



New Worst-Case Hardness
I A latent reduction from [R’05,PRS’17] works for our σ ≈ η(Z).

I Works for a bounded poly(n) number of LWE samples: covers PKEs!

Medium-Sized Errors 
Choosing an Error Distribution 
I Narrower errors =⇒ smaller parameters q, n =⇒ better efficiency. 

I But how narrow can the error distribution safely be? 

Risk Category: Small Errors 

1 LWE with O(1)-bounded error is poly(n)-time solvable [AG’11,ACFP’14] 

given large-poly(n)-many samples. (PKEs don’t reveal this many!) 

2 Prior worst-case hardness needs Gaussian error of σ > 
√ 
n/(2π). 

Or narrower error, but only for few LWE samples. (PKEs reveal more!) 

=⇒ Sizeable gap between known-vulnerable and worst-case-hard params. 

6 / 11 



I Works for a bounded poly(n) number of LWE samples: covers PKEs!

Medium-Sized Errors 
Choosing an Error Distribution 
I Narrower errors =⇒ smaller parameters q, n =⇒ better efficiency. 

I But how narrow can the error distribution safely be? 

Risk Category: Small Errors 

1 LWE with O(1)-bounded error is poly(n)-time solvable [AG’11,ACFP’14] 

given large-poly(n)-many samples. (PKEs don’t reveal this many!) 

2 Prior worst-case hardness needs Gaussian error of σ > 
√ 
n/(2π). 

Or narrower error, but only for few LWE samples. (PKEs reveal more!) 

=⇒ Sizeable gap between known-vulnerable and worst-case-hard params. 

New Worst-Case Hardness 
I A latent reduction from [R’05,PRS’17] works for our σ ≈ η(Z). 

6 / 11 



Medium-Sized Errors 
Choosing an Error Distribution 
I Narrower errors =⇒ smaller parameters q, n =⇒ better efficiency. 

I But how narrow can the error distribution safely be? 

Risk Category: Small Errors 

1 LWE with O(1)-bounded error is poly(n)-time solvable [AG’11,ACFP’14] 

given large-poly(n)-many samples. (PKEs don’t reveal this many!) 

2 Prior worst-case hardness needs Gaussian error of σ > 
√ 
n/(2π). 

Or narrower error, but only for few LWE samples. (PKEs reveal more!) 

=⇒ Sizeable gap between known-vulnerable and worst-case-hard params. 

New Worst-Case Hardness 
I A latent reduction from [R’05,PRS’17] works for our σ ≈ η(Z). 
I Works for a bounded poly(n) number of LWE samples: covers PKEs! 

6 / 11 



2 cSHAKE → SHAKE, refined domain separation, fewer calls to Keccak

3 QFO 6⊥ → FO 6⊥ transformation: removed extra hash value in ct.

Rationale: (non-tight) QROM proof [JZCWM’18] of

OW-CPA PKE⇒ IND-CCA KEM.

4 Detailed, tight ROM proof [HHK’17,LSS’14] of

IND-CPA PKE⇒ OW-PCA PKE⇒ IND-CCA KEM,

with ‘Rényi switch’ at OW-PCA step.

5 WIP: Cortex M4 implementation with 2x memory improvement

What’s New in Round 2 

1 Level 5 parameter set: FrodoKEM-1344 

7 / 11 



3 QFO 6⊥ → FO 6⊥ transformation: removed extra hash value in ct.

Rationale: (non-tight) QROM proof [JZCWM’18] of

OW-CPA PKE⇒ IND-CCA KEM.

4 Detailed, tight ROM proof [HHK’17,LSS’14] of

IND-CPA PKE⇒ OW-PCA PKE⇒ IND-CCA KEM,

with ‘Rényi switch’ at OW-PCA step.

5 WIP: Cortex M4 implementation with 2x memory improvement

What’s New in Round 2 

1 

2 

Level 5 parameter set: FrodoKEM-1344 

cSHAKE → SHAKE, refined domain separation, fewer calls to Keccak 

7 / 11 



Rationale: (non-tight) QROM proof [JZCWM’18] of

OW-CPA PKE⇒ IND-CCA KEM.

4 Detailed, tight ROM proof [HHK’17,LSS’14] of

IND-CPA PKE⇒ OW-PCA PKE⇒ IND-CCA KEM,

with ‘Rényi switch’ at OW-PCA step.

5 WIP: Cortex M4 implementation with 2x memory improvement

What’s New in Round 2 

1 

2 

3 

Level 5 parameter set: FrodoKEM-1344 

cSHAKE → SHAKE, refined domain separation, fewer calls to Keccak 

QFO 6⊥ → FO 6⊥ transformation: removed extra hash value in ct. 

7 / 11 



4 Detailed, tight ROM proof [HHK’17,LSS’14] of

IND-CPA PKE⇒ OW-PCA PKE⇒ IND-CCA KEM,

with ‘Rényi switch’ at OW-PCA step.

5 WIP: Cortex M4 implementation with 2x memory improvement

What’s New in Round 2 

1 

2 

3 

Level 5 parameter set: FrodoKEM-1344 

cSHAKE → SHAKE, refined domain separation, fewer calls to Keccak 

QFO 6⊥ → FO 6⊥ transformation: removed extra hash value in ct. 

Rationale: (non-tight) QROM proof [JZCWM’18] of 

OW-CPA PKE ⇒ IND-CCA KEM. 

7 / 11 



5 WIP: Cortex M4 implementation with 2x memory improvement

What’s New in Round 2 

1 

2 

3 

4 

Level 5 parameter set: FrodoKEM-1344 

cSHAKE → SHAKE, refined domain separation, fewer calls to Keccak 

QFO 6⊥ → FO 6⊥ transformation: removed extra hash value in ct. 

Rationale: (non-tight) QROM proof [JZCWM’18] of 

OW-CPA PKE ⇒ IND-CCA KEM. 

Detailed, tight ROM proof [HHK’17,LSS’14] of 

IND-CPA PKE ⇒ OW-PCA PKE ⇒ IND-CCA KEM, 

with ‘Rényi switch’ at OW-PCA step. 

7 / 11 



What’s New in Round 2 

1 

2 

3 

4 

Level 5 parameter set: FrodoKEM-1344 

cSHAKE → SHAKE, refined domain separation, fewer calls to Keccak 

QFO 6⊥ → FO 6⊥ transformation: removed extra hash value in ct. 

Rationale: (non-tight) QROM proof [JZCWM’18] of 

OW-CPA PKE ⇒ IND-CCA KEM. 

Detailed, tight ROM proof [HHK’17,LSS’14] of 

IND-CPA PKE ⇒ OW-PCA PKE ⇒ IND-CCA KEM, 

with ‘Rényi switch’ at OW-PCA step. 

WIP: Cortex M4 implementation with 2x memory improvement 5 

7 / 11 



I For worst-case hardness, FrodoPKE uses ‘ideal’ Gaussian errors.
For implementation, FrodoKEM uses ‘approximate’ Gaussian errors.

I Switch at OW-PCA (search), security loss ≈ 0 by Rényi div [LSS’14].
(Precise, tiny bounds given in spec.)

Alternative Assumption: OW-PCA of T[FrodoPKE]

I OW-PCA ≡ OW-CPA, unless attacker queries an m 6= Dec(Enc(m)).

I Costs more than claimed security for our FrodoKEM params [DVV’19].

I So, ≈ OW-CPA of T[FrodoPKE] also suffices for CCA.

Tight ROM Proof of CCA Security 

I Generic, tight transforms following [HHK’17]: 

FrodoPKE 
(IND-CPA) 

T[FrodoPKE] 
(OW-PCA) 

U 6⊥ T FrodoKEM 
(IND-CCA) 

8 / 11 



I Switch at OW-PCA (search), security loss ≈ 0 by Rényi div [LSS’14].
(Precise, tiny bounds given in spec.)

Alternative Assumption: OW-PCA of T[FrodoPKE]

I OW-PCA ≡ OW-CPA, unless attacker queries an m 6= Dec(Enc(m)).

I Costs more than claimed security for our FrodoKEM params [DVV’19].

I So, ≈ OW-CPA of T[FrodoPKE] also suffices for CCA.

Tight ROM Proof of CCA Security 

I Generic, tight transforms following [HHK’17]: 

FrodoPKE 
(IND-CPA) 

T[FrodoPKE] 
(OW-PCA) 

U 6⊥ T FrodoKEM 
(IND-CCA) 

I For worst-case hardness, FrodoPKE uses ‘ideal’ Gaussian errors. 
For implementation, FrodoKEM uses ‘approximate’ Gaussian errors. 

8 / 11 



Alternative Assumption: OW-PCA of T[FrodoPKE]

I OW-PCA ≡ OW-CPA, unless attacker queries an m 6= Dec(Enc(m)).

I Costs more than claimed security for our FrodoKEM params [DVV’19].

I So, ≈ OW-CPA of T[FrodoPKE] also suffices for CCA.

Tight ROM Proof of CCA Security 

I Generic, tight transforms following [HHK’17]: 

FrodoPKE 
(IND-CPA) 

T[FrodoPKE] 
(OW-PCA) 

U 6⊥ T FrodoKEM 
(IND-CCA) 

I For worst-case hardness, FrodoPKE uses ‘ideal’ Gaussian errors. 
For implementation, FrodoKEM uses ‘approximate’ Gaussian errors. 

I Switch at OW-PCA (search), security loss ≈ 0 by Rényi div [LSS’14]. 
(Precise, tiny bounds given in spec.) 

8 / 11 



I Costs more than claimed security for our FrodoKEM params [DVV’19].

I So, ≈ OW-CPA of T[FrodoPKE] also suffices for CCA.

Tight ROM Proof of CCA Security 

I Generic, tight transforms following [HHK’17]: 

FrodoPKE 
(IND-CPA) 

T[FrodoPKE] 
(OW-PCA) 

U 6⊥ T FrodoKEM 
(IND-CCA) 

I For worst-case hardness, FrodoPKE uses ‘ideal’ Gaussian errors. 
For implementation, FrodoKEM uses ‘approximate’ Gaussian errors. 

I Switch at OW-PCA (search), security loss ≈ 0 by Rényi div [LSS’14]. 
(Precise, tiny bounds given in spec.) 

Alternative Assumption: OW-PCA of T[FrodoPKE] 
I OW-PCA ≡ OW-CPA, unless attacker queries an m 6= Dec(Enc(m)). 

8 / 11 



I So, ≈ OW-CPA of T[FrodoPKE] also suffices for CCA.

Tight ROM Proof of CCA Security 

I Generic, tight transforms following [HHK’17]: 

FrodoPKE 
(IND-CPA) 

T[FrodoPKE] 
(OW-PCA) 

U 6⊥ T FrodoKEM 
(IND-CCA) 

I For worst-case hardness, FrodoPKE uses ‘ideal’ Gaussian errors. 
For implementation, FrodoKEM uses ‘approximate’ Gaussian errors. 

I Switch at OW-PCA (search), security loss ≈ 0 by Rényi div [LSS’14]. 
(Precise, tiny bounds given in spec.) 

Alternative Assumption: OW-PCA of T[FrodoPKE] 
I OW-PCA ≡ OW-CPA, unless attacker queries an m 6= Dec(Enc(m)). 

I Costs more than claimed security for our FrodoKEM params [DVV’19]. 

8 / 11 



Tight ROM Proof of CCA Security 

I Generic, tight transforms following [HHK’17]: 

FrodoPKE 
(IND-CPA) 

T[FrodoPKE] 
(OW-PCA) 

U 6⊥ T FrodoKEM 
(IND-CCA) 

I For worst-case hardness, FrodoPKE uses ‘ideal’ Gaussian errors. 
For implementation, FrodoKEM uses ‘approximate’ Gaussian errors. 

I Switch at OW-PCA (search), security loss ≈ 0 by Rényi div [LSS’14]. 
(Precise, tiny bounds given in spec.) 

Alternative Assumption: OW-PCA of T[FrodoPKE] 
I OW-PCA ≡ OW-CPA, unless attacker queries an m 6= Dec(Enc(m)). 

I Costs more than claimed security for our FrodoKEM params [DVV’19]. 

I So, ≈ OW-CPA of T[FrodoPKE] also suffices for CCA. 

8 / 11 



This significantly underestimates the cost of known attacks, but it is
prudent to expect better lower-order terms with further research.

I LWE and classical CCA security (end-to-end from ROM proof):

LWE Security CCA (ROM)
n q σ C ≥ Q ≥ Sec ≥

FrodoKEM-640 640 215 2.75 145 104 141
FrodoKEM-976 976 216 2.3 210 150 206
FrodoKEM-1344 1344 216 1.4 275 197 268

Concrete Parameters and Security 

I Use ‘core-SVP’ methodology [ADPS’16] to lower-bound the first-order 
exponential time (and space) of SVP in appropriate dimension. 

9 / 11 



I LWE and classical CCA security (end-to-end from ROM proof):

LWE Security CCA (ROM)
n q σ C ≥ Q ≥ Sec ≥

FrodoKEM-640 640 215 2.75 145 104 141
FrodoKEM-976 976 216 2.3 210 150 206
FrodoKEM-1344 1344 216 1.4 275 197 268

Concrete Parameters and Security 

I Use ‘core-SVP’ methodology [ADPS’16] to lower-bound the first-order 
exponential time (and space) of SVP in appropriate dimension. 

This significantly underestimates the cost of known attacks, but it is 
prudent to expect better lower-order terms with further research. 

9 / 11 



Concrete Parameters and Security 

I Use ‘core-SVP’ methodology [ADPS’16] to lower-bound the first-order 
exponential time (and space) of SVP in appropriate dimension. 

This significantly underestimates the cost of known attacks, but it is 
prudent to expect better lower-order terms with further research. 

I LWE and classical CCA security (end-to-end from ROM proof): 

LWE Security CCA (ROM) 
n q σ C ≥ Q ≥ Sec ≥ 

FrodoKEM-640 640 215 2.75 145 104 141 
FrodoKEM-976 976 216 2.3 210 150 206 
FrodoKEM-1344 1344 216 1.4 275 197 268 

9 / 11 



I Speed (in kilocycles, 3.4GHz Intel Core i7-6700 Skylake, AES-NI):

KeyGen Encaps Decaps

FrodoKEM-640 1,384 1,858 1,749
FrodoKEM-976 2,820 3,559 3,400
FrodoKEM-1344 4,756 5,981 5,748

I Cache A← seedA for pk lifetime: save ≈ 40% in Encaps/Decaps

Performance 
I Sizes (in bytes): 

secret key public key ciphertext 

FrodoKEM-640 
FrodoKEM-976 
FrodoKEM-1344 

10,272 
15,664 
21,568 

9,616 
15,632 
21,520 

9,720 
15,744 
21,632 

10 / 11 



I Cache A← seedA for pk lifetime: save ≈ 40% in Encaps/Decaps

Performance 
I Sizes (in bytes): 

secret key public key ciphertext 

FrodoKEM-640 
FrodoKEM-976 
FrodoKEM-1344 

10,272 
15,664 
21,568 

9,616 
15,632 
21,520 

9,720 
15,744 
21,632 

I Speed (in kilocycles, 3.4GHz Intel Core i7-6700 Skylake, AES-NI): 

KeyGen Encaps Decaps 

FrodoKEM-640 
FrodoKEM-976 
FrodoKEM-1344 

1,384 
2,820 
4,756 

1,858 
3,559 
5,981 

1,749 
3,400 
5,748 

10 / 11 



Performance 
I Sizes (in bytes): 

secret key public key ciphertext 

FrodoKEM-640 10,272 9,616 9,720 
FrodoKEM-976 15,664 15,632 15,744 
FrodoKEM-1344 21,568 21,520 21,632 

I Speed (in kilocycles, 3.4GHz Intel Core i7-6700 Skylake, AES-NI): 

KeyGen Encaps Decaps 

FrodoKEM-640 1,384 1,858 1,749 
FrodoKEM-976 2,820 3,559 3,400 
FrodoKEM-1344 4,756 5,981 5,748 

I Cache A ← seedA for pk lifetime: save ≈ 40% in Encaps/Decaps 

10 / 11 



Parting Thought 

FrodoKEM’s security derives from plain Learning With Errors 

on algebraically unstructured lattices, 

parameterized cautiously to avoid known risk categories, 

and to conform to a worst-case/average-case reduction. 

https://FrodoKEM.org 

Thanks! 

11 / 11 

https://FrodoKEM.org

