FrodoKEM
practical quantum-secure key encapsulation
from generic lattices

Erdem Alkim Joppe W. Bos Léo Ducas Patrick Longa
Ilya Mironov Michael Naehrig Valeria Nikolaenko
Chris Peikert Ananth Raghunathan Douglas Stebila
FrodoKEM

FrodoKEM’s security derives from plain *Learning With Errors* on algebraically unstructured lattices, parameterized cautiously to avoid known risk categories, and to conform to a worst-case/average-case reduction.
FrodoKEM’s security derives from plain *Learning With Errors* on algebraically unstructured lattices, parameterized cautiously to avoid known risk categories, and to conform to a worst-case/average-case reduction.
FrodoKEM’s security derives from plain *Learning With Errors* on algebraically unstructured lattices, parameterized cautiously to avoid known risk categories, and to conform to a *worst-case/average-case reduction*.
FrodoKEM’s security derives from plain *Learning With Errors* on algebraically unstructured lattices, parameterized cautiously to avoid known risk categories, and to conform to a worst-case/average-case reduction.
FrodoKEM’s security derives from plain *Learning With Errors* on algebraically unstructured lattices, parameterized cautiously to avoid known risk categories, and to conform to a worst-case/average-case reduction.

Concrete Instantiations

1. FrodoKEM-640: targets Level 1 security (≥ AES-128)
2. FrodoKEM-976: targets Level 3 security (≥ AES-192)
3. FrodoKEM-1344 (new, round 2): Level 5 security (≥ AES-256)
Learning With Errors (LWE) [Regev’05]

- **Lineage of** [Ajtai’96, AjtaiDwork’97]: worst-case/average-case reductions:
Pedigree

Learning With Errors (LWE) [Regev’05]

- Lineage of [Ajtai’96,AjtaiDwork’97]: worst-case/average-case reductions: breaking random inputs \implies solving famous problems on any lattice.
Pedigree

Learning With Errors (LWE) [Regev’05]

- Lineage of [Ajtai’96,AjtaiDwork’97]: worst-case/average-case reductions: breaking random inputs \implies solving famous problems on any lattice.

 “[This] assures us that attacks on the cryptographic construction are likely to be effective only for small choices of parameters and not asymptotically. In other words . . . there are no fundamental flaws in the design of our cryptographic construction.” [MicciancioRegev’09]
Pedigree

Learning With Errors (LWE) [Regev’05]

- Lineage of [Ajtai’96, AjtaiDwork’97]: worst-case/average-case reductions: breaking random inputs \implies solving famous problems on any lattice.

 “[This] assures us that attacks on the cryptographic construction are likely to be effective only for small choices of parameters and not asymptotically. In other words ... there are no fundamental flaws in the design of our cryptographic construction.” [MicciancioRegev’09]

- LWE has been heavily used and cryptanalyzed by countless works.
Pedigree

Learning With Errors (LWE) [Regev’05]

- Lineage of [Ajtai’96, AjtaiDwork’97]: worst-case/average-case reductions: breaking random inputs \implies solving famous problems on any lattice.

 “[This] assures us that attacks on the cryptographic construction are likely to be effective only for small choices of parameters and not asymptotically. In other words . . . there are no fundamental flaws in the design of our cryptographic construction.” [MicciancioRegev’09]

- LWE has been heavily used and cryptanalyzed by countless works.

Public-Key Encryption/Key Exchange

- Many schemes with tight (CPA-)security from LWE:

 [Regev’05, PVW’08, GPV’08, P’09, LP’11, . . .]
Learning With Errors (LWE) [Regev’05]

- Lineage of [Ajtai’96, AjtaiDwork’97]: worst-case/average-case reductions: breaking random inputs \Rightarrow solving famous problems on any lattice.

 “[This] assures us that attacks on the cryptographic construction are likely to be effective only for small choices of parameters and not asymptotically. In other words . . . there are no fundamental flaws in the design of our cryptographic construction.” [MicciancioRegev’09]

- LWE has been heavily used and cryptanalyzed by countless works.

Public-Key Encryption/Key Exchange

- Many schemes with tight (CPA-)security from LWE:

 [Regev’05, PVW’08, GPV’08, P’09, LP’11, . . .]

- FrodoCCS [BCDMNNRS’16] instantiated and implemented [LP’11], using pseudorandom public matrix A to reduce public key size.
Pedigree

Learning With Errors (LWE) [Regev’05]

- Lineage of [Ajtai’96,AjtaiDwork’97]: worst-case/average-case reductions:
 breaking random inputs \implies solving famous problems on any lattice.

 “[This] assures us that attacks on the cryptographic construction are likely to be effective only for small choices of parameters and not asymptotically. In other words ... there are no fundamental flaws in the design of our cryptographic construction.” [MicciancioRegev’09]

- LWE has been heavily used and cryptanalyzed by countless works.

Public-Key Encryption/Key Exchange

- Many schemes with tight (CPA-)security from LWE:
 [Regev’05,PVW’08,GPV’08,P’09,LP’11, ...]

- FrodoCCS [BCDMNNRS’16] instantiated and implemented [LP’11], using pseudorandom public matrix A to reduce public key size.

- FrodoPKE/KEM [this work]: wider error, new params, CCA security
LWE and FrodoPKE

Learning With Errors

- Dimension n, modulus q, error distribution χ on ‘small’ integers.
LWE and FrodoPKE

Learning With Errors

- Dimension n, modulus q, error distribution χ on ‘small’ integers.

Assumption: for uniformly random matrix A over \mathbb{Z}_q and S from χ,

$$[A, B \approx SA] \equiv \text{uniform over } \mathbb{Z}_q.$$
LWE and FrodoPKE

Learning With Errors

- Dimension n, modulus q, error distribution χ on ‘small’ integers.

Assumption: for uniformly random matrix A over \mathbb{Z}_q and S from χ,

$$[A, B \approx SA] \overset{c}{=} \text{uniform over } \mathbb{Z}_q.$$

Bounded-distance decoding on a random ‘q-ary’ lattice defined by A:
Learning With Errors

- Dimension n, modulus q, error distribution χ on ‘small’ integers.

Assumption: for uniformly random matrix A over \mathbb{Z}_q and S from χ,

\[
[A, B \approx SA] \overset{c}{\equiv} \text{uniform over } \mathbb{Z}_q.
\]

\[
\begin{align*}
S &\leftarrow \chi^{k \times n} \\
pk &= \text{seed}_A, \ B \approx SA \\
(A &= \text{expand} (\text{seed}_A) \in \mathbb{Z}_q^{n \times n})
\end{align*}
\]
LWE and FrodoPKE

Learning With Errors

- Dimension n, modulus q, error distribution χ on ‘small’ integers.

Assumption: for uniformly random matrix A over \mathbb{Z}_q and S from χ,

$$[A, B \approx SA]^c \equiv \text{uniform over } \mathbb{Z}_q.$$
LWE and FrodoPKE

Learning With Errors

- Dimension n, modulus q, error distribution χ on ‘small’ integers.

Assumption: for uniformly random matrix A over \mathbb{Z}_q and S from χ,

$$[A, B \approx SA] \xleftarrow{\text{c}} \text{uniform over } \mathbb{Z}_q.$$
LWE and FrodoPKE

Learning With Errors

- Dimension n, modulus q, error distribution χ on ‘small’ integers.

Assumption: for uniformly random matrix A over \mathbb{Z}_q and S from χ,

$$[A, B \approx SA] \overset{c}{\equiv} \text{uniform over } \mathbb{Z}_q.$$

$$S \leftarrow \chi^{k \times n} \quad pk = \text{seed}_A, \quad B \approx SA \quad (A = \text{expand}(\text{seed}_A) \in \mathbb{Z}_q^{n \times n})$$

$$C \approx AR \quad C' \approx BR + \frac{q}{2} \cdot M$$

$$M \in \{0, 1\}^{k \times \ell}$$

$$C' - SC \approx \frac{q}{2} \cdot M$$

(Images courtesy xkcd.org)
Learning With Errors

- Dimension n, modulus q, error distribution χ on ‘small’ integers.

Assumption: for uniformly random matrix A over \mathbb{Z}_q and S from χ,

$$[A, B \approx SA] \overset{c}{=} \text{uniform over } \mathbb{Z}_q.$$
Distinctive Features of FrodoPKE/KEM

1. Generic, algebraically unstructured lattices: plain LWE. (No algebraic ring structure for potential exploitation.)

2. ‘Medium-sized’ errors conforming to a worst-case/average-case reduction from a previously studied lattice problem (BDD with DGS).

3. Very simple design and constant-time implementation:
 - power-of-2 modulus q for cheap & easy modular arithmetic
 - straightforward error sampling
 - no ‘reconciliation’ or error-correcting codes for removing noise
 - x64 implementation: 256 lines of plain C code (+ preexisting symmetric primitives)
Distinctive Features of FrodoPKE/KEM

1. Generic, algebraically unstructured lattices: plain LWE.
 (No algebraic ring structure for potential exploitation.)

2. ‘Medium-sized’ errors conforming to a worst-case/average-case reduction from a previously studied lattice problem (BDD with DGS).

3. Very simple design and constant-time implementation:
 - power-of-2 modulus q for cheap & easy modular arithmetic
 - straightforward error sampling
 - no ‘reconciliation’ or error-correcting codes for removing noise
 - x64 implementation: 256 lines of plain C code
 (+ preexisting symmetric primitives)
Distinctive Features of FrodoPKE/KEM

1. Generic, algebraically unstructured lattices: plain LWE. (No algebraic ring structure for potential exploitation.)

2. ‘Medium-sized’ errors conforming to a worst-case/average-case reduction from a previously studied lattice problem (BDD with DGS).

3. Very simple design and constant-time implementation:
 - power-of-2 modulus q for cheap & easy modular arithmetic
 - straightforward error sampling
 - no ‘reconciliation’ or error-correcting codes for removing noise
 - x64 implementation: 256 lines of plain C code (+ preexisting symmetric primitives)
Medium-Sized Errors

Choosing an Error Distribution

- **Narrower errors** \Rightarrow **smaller parameters** q, n \Rightarrow **better efficiency.**
Medium-Sized Errors

Choosing an Error Distribution

- Narrower errors \implies smaller parameters q, n \implies better efficiency.
- But how narrow can the error distribution safely be?
Medium-Sized Errors

Choosing an Error Distribution

- Narrower errors \implies smaller parameters $q, n \implies$ better efficiency.
- But how narrow can the error distribution safely be?

Risk Category: Small Errors

1. LWE with $O(1)$-bounded error is poly(n)-time solvable [AG’11,ACFP’14]
Medium-Sized Errors

Choosing an Error Distribution

- Narrower errors \Rightarrow smaller parameters $q, n \Rightarrow$ better efficiency.
- But how narrow can the error distribution safely be?

Risk Category: Small Errors

1. LWE with $O(1)$-bounded error is $\text{poly}(n)$-time solvable [AG’11,ACFP’14] given large-$\text{poly}(n)$-many samples. (PKEs don’t reveal this many!)
Medium-Sized Errors

Choosing an Error Distribution

- Narrower errors \implies smaller parameters $q, n \implies$ better efficiency.
- But how narrow can the error distribution safely be?

Risk Category: Small Errors

1. LWE with $O(1)$-bounded error is $\text{poly}(n)$-time solvable [AG’11,ACFP’14] given large-$\text{poly}(n)$-many samples. (PKEs don’t reveal this many!)

2. Prior worst-case hardness needs Gaussian error of $\sigma > \sqrt{n}/(2\pi)$.
Medium-Sized Errors

Choosing an Error Distribution

- Narrower errors \implies smaller parameters q, n \implies better efficiency.
- But how narrow can the error distribution safely be?

Risk Category: Small Errors

1. LWE with $O(1)$-bounded error is $\text{poly}(n)$-time solvable [AG'11,ACFP'14] given large-$\text{poly}(n)$-many samples. (PKEs don’t reveal this many!)

2. Prior worst-case hardness needs Gaussian error of $\sigma > \sqrt{n}/(2\pi)$.
 Or narrower error, but only for few LWE samples. (PKEs reveal more!)
Medium-Sized Errors

Choosing an Error Distribution

- Narrower errors \implies smaller parameters q, n \implies better efficiency.
- But how narrow can the error distribution safely be?

Risk Category: Small Errors

1. LWE with $O(1)$-bounded error is $\text{poly}(n)$-time solvable [AG'11,ACFP'14] given large-$\text{poly}(n)$-many samples. (PKEs don’t reveal this many!)
2. Prior worst-case hardness needs Gaussian error of $\sigma > \sqrt{n}/(2\pi)$.

 Or narrower error, but only for few LWE samples. (PKEs reveal more!)

\implies Sizeable gap between known-vulnerable and worst-case-hard params.
Medium-Sized Errors

Choosing an Error Distribution

- Narrower errors \implies smaller parameters $q, n \implies$ better efficiency.
- But how narrow can the error distribution safely be?

Risk Category: Small Errors

1. LWE with $O(1)$-bounded error is $\text{poly}(n)$-time solvable [AG’11,ACFP’14] given large-$\text{poly}(n)$-many samples. (PKEs don’t reveal this many!)

2. Prior worst-case hardness needs Gaussian error of $\sigma > \sqrt{n}/(2\pi)$.
 Or narrower error, but only for few LWE samples. (PKEs reveal more!)

\implies Sizeable gap between known-vulnerable and worst-case-hard params.

New Worst-Case Hardness

- A latent reduction from [R’05,PRS’17] works for our $\sigma \approx \eta(\mathbb{Z})$.
Medium-Sized Errors

Choosing an Error Distribution

- Narrower errors \implies smaller parameters $q, n \implies$ better efficiency.
- But how narrow can the error distribution safely be?

Risk Category: Small Errors

1. LWE with $O(1)$-bounded error is poly(n)-time solvable [AG’11,ACFP’14] given large-poly(n)-many samples. (PKEs don’t reveal this many!)

2. Prior worst-case hardness needs Gaussian error of $\sigma > \sqrt{n}/(2\pi)$.
 Or narrower error, but only for few LWE samples. (PKEs reveal more!)

\implies Sizeable gap between known-vulnerable and worst-case-hard params.

New Worst-Case Hardness

- A latent reduction from [R’05,PRS’17] works for our $\sigma \approx \eta(\mathbb{Z})$.
- Works for a bounded poly(n) number of LWE samples: covers PKEs!
What’s New in Round 2

1. Level 5 parameter set: FrodoKEM-1344
What’s New in Round 2

1. Level 5 parameter set: FrodoKEM-1344

2. cSHAKE \rightarrow SHAKE, refined domain separation, fewer calls to Keccak
What’s New in Round 2

1. Level 5 parameter set: FrodoKEM-1344
2. cSHAKE \rightarrow SHAKE, refined domain separation, fewer calls to Keccak
3. QFO$^\perp$ \rightarrow FO$^\perp$ transformation: removed extra hash value in ct.
What’s New in Round 2

1. Level 5 parameter set: FrodoKEM-1344
2. cSHAKE \rightarrow SHAKE, refined domain separation, fewer calls to Keccak
3. QFO \rightarrow FO \perp transformation: removed extra hash value in ct
 Rationale: (non-tight) QROM proof [JZCWM'18] of

 OW-CPA PKE \Rightarrow IND-CCA KEM.
What’s New in Round 2

1. Level 5 parameter set: FrodoKEM-1344

2. cSHAKE → SHAKE, refined domain separation, fewer calls to Keccak

3. QFOT → FOT transformation: removed extra hash value in ct.
 Rationale: (non-tight) QROM proof [JZCWM’18] of

 OW-CPA PKE \Rightarrow IND-CCA KEM.

4. Detailed, tight ROM proof [HHK’17,LSS’14] of

 IND-CPA PKE \Rightarrow OW-PCA PKE \Rightarrow IND-CCA KEM,

 with ‘Rényi switch’ at OW-PCA step.
What’s New in Round 2

1. Level 5 parameter set: FrodoKEM-1344

2. cSHAKE \rightarrow SHAKE, refined domain separation, fewer calls to Keccak

3. QFO$^\mathcal{F}$ \rightarrow FO$^\mathcal{F}$ transformation: removed extra hash value in ct.
 Rationale: (non-tight) QROM proof [JZCWM’18] of
 \[
 \text{OW-CPA PKE} \Rightarrow \text{IND-CCA KEM}.
 \]

4. Detailed, tight ROM proof [HHK’17,LSS’14] of
 \[
 \text{IND-CPA PKE} \Rightarrow \text{OW-PCA PKE} \Rightarrow \text{IND-CCA KEM},
 \]
 with ‘Rényi switch’ at OW-PCA step.

5. WIP: Cortex M4 implementation with 2x memory improvement
Tight ROM Proof of CCA Security

- Generic, tight transforms following [HHK’17]:

\[
\begin{align*}
\text{FrodoPKE (IND-CPA)} & \xrightarrow{T} \text{T[FrodoPKE] (OW-PCA)} & \xrightarrow{U^\perp} \text{FrodoKEM (IND-CCA)}
\end{align*}
\]
Tight ROM Proof of CCA Security

- Generic, tight transforms following [HHK'17]:

\[\text{FrodoPKE (IND-CPA)} \xrightarrow{T} \text{T[FrodoPKE] (OW-PCA)} \xrightarrow{U'} \text{FrodoKEM (IND-CCA)} \]

- For worst-case hardness, FrodoPKE uses ‘ideal’ Gaussian errors. For implementation, FrodoKEM uses ‘approximate’ Gaussian errors.
Tight ROM Proof of CCA Security

- Generic, tight transforms following [HHK’17]:

 - For worst-case hardness, FrodoPKE uses ‘ideal’ Gaussian errors. For implementation, FrodoKEM uses ‘approximate’ Gaussian errors.

 - **Switch at OW-PCA (search)**, security loss ≈ 0 by Rényi div [LSS’14]. (Precise, tiny bounds given in spec.)
Tight ROM Proof of CCA Security

- Generic, tight transforms following [HHK’17]:
 \[\text{FrodoPKE (IND-CPA)} \xrightarrow{T} \text{T[FrodoPKE] (OW-PCA)} \xrightarrow{U^⊥} \text{FrodoKEM (IND-CCA)} \]

- For worst-case hardness, FrodoPKE uses ‘ideal’ Gaussian errors. For implementation, FrodoKEM uses ‘approximate’ Gaussian errors.

- Switch at OW-PCA (search), security loss \(\approx 0 \) by Rényi div [LSS’14]. (Precise, tiny bounds given in spec.)

Alternative Assumption: OW-PCA of T[FrodoPKE]

- OW-PCA \(\equiv \) OW-CPA, unless attacker queries an \(m \neq \text{Dec(Enc}(m)) \).
Tight ROM Proof of CCA Security

- Generic, tight transforms following [HHK’17]:

\[
\begin{align*}
\text{FrodoPKE (IND-CPA)} & \xrightarrow{T} \text{T[FrodoPKE] (OW-PCA)} & \xrightarrow{U^f} \text{FrodoKEM (IND-CCA)}
\end{align*}
\]

- For worst-case hardness, FrodoPKE uses ‘ideal’ Gaussian errors. For implementation, FrodoKEM uses ‘approximate’ Gaussian errors.

- Switch at OW-PCA (search), security loss ≈ 0 by Rényi div [LSS’14].
 (Precise, tiny bounds given in spec.)

Alternative Assumption: OW-PCA of T[FrodoPKE]

- OW-PCA \equiv OW-CPA, unless attacker queries an $m \neq \text{Dec}(\text{Enc}(m))$.
- Costs more than claimed security for our FrodoKEM params [DVV’19].
Tight ROM Proof of CCA Security

- Generic, tight transforms following [HHK’17]:
 - $\text{FrodoPKE (IND-CPA)} \xrightarrow{T} \text{T[FrodoPKE] (OW-PCA)} \xrightarrow{U^\perp} \text{FrodoKEM (IND-CCA)}$

- For worst-case hardness, FrodoPKE uses ‘ideal’ Gaussian errors.
 For implementation, FrodoKEM uses ‘approximate’ Gaussian errors.

- Switch at OW-PCA (search), security loss ≈ 0 by Rényi div [LSS’14].
 (Precise, tiny bounds given in spec.)

Alternative Assumption: OW-PCA of T[FrodoPKE]

- OW-PCA \equiv OW-CPA, unless attacker queries an $m \neq \text{Dec(Enc(m))}$.
- Costs more than claimed security for our FrodoKEM params [DVV’19].
- So, \approx OW-CPA of T[FrodoPKE] also suffices for CCA.
Concrete Parameters and Security

- Use ‘core-SVP’ methodology [ADPS’16] to lower-bound the first-order exponential time (and space) of SVP in appropriate dimension.
Concrete Parameters and Security

- Use ‘core-SVP’ methodology [ADPS’16] to lower-bound the \textit{first-order exponential time} (and space) of SVP in appropriate dimension.

This \textbf{significantly underestimates} the cost of known attacks, but it is prudent to expect better \textit{lower-order terms} with further research.
Use ‘core-SVP’ methodology [ADPS’16] to lower-bound the \textit{first-order exponential time} (and space) of SVP in appropriate dimension.

This significantly underestimates the cost of known attacks, but it is prudent to expect better lower-order terms with further research.

\begin{itemize}
 \item \textbf{LWE and classical CCA security} (end-to-end from ROM proof):
\end{itemize}

\begin{table}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
 & n & q & σ & LWE Security & CCA (ROM) \\
\hline
FrodoKEM-640 & 640 & 2^{15} & 2.75 & 145 & 141 \\
FrodoKEM-976 & 976 & 2^{16} & 2.3 & 210 & 206 \\
FrodoKEM-1344 & 1344 & 2^{16} & 1.4 & 275 & 268 \\
\hline
\end{tabular}
\end{table}
Performance

- Sizes (in bytes):

<table>
<thead>
<tr>
<th></th>
<th>secret key</th>
<th>public key</th>
<th>ciphertext</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrodoKEM-640</td>
<td>10,272</td>
<td>9,616</td>
<td>9,720</td>
</tr>
<tr>
<td>FrodoKEM-976</td>
<td>15,664</td>
<td>15,632</td>
<td>15,744</td>
</tr>
<tr>
<td>FrodoKEM-1344</td>
<td>21,568</td>
<td>21,520</td>
<td>21,632</td>
</tr>
</tbody>
</table>
Performance

- Sizes (in bytes):

<table>
<thead>
<tr>
<th></th>
<th>secret key</th>
<th>public key</th>
<th>ciphertext</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrodoKEM-640</td>
<td>10,272</td>
<td>9,616</td>
<td>9,720</td>
</tr>
<tr>
<td>FrodoKEM-976</td>
<td>15,664</td>
<td>15,632</td>
<td>15,744</td>
</tr>
<tr>
<td>FrodoKEM-1344</td>
<td>21,568</td>
<td>21,520</td>
<td>21,632</td>
</tr>
</tbody>
</table>

- Speed (in kilocycles, 3.4GHz Intel Core i7-6700 Skylake, AES-NI):

<table>
<thead>
<tr>
<th></th>
<th>KeyGen</th>
<th>Encaps</th>
<th>Decaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrodoKEM-640</td>
<td>1,384</td>
<td>1,858</td>
<td>1,749</td>
</tr>
<tr>
<td>FrodoKEM-976</td>
<td>2,820</td>
<td>3,559</td>
<td>3,400</td>
</tr>
<tr>
<td>FrodoKEM-1344</td>
<td>4,756</td>
<td>5,981</td>
<td>5,748</td>
</tr>
</tbody>
</table>
Performance

- Sizes (in bytes):

<table>
<thead>
<tr>
<th></th>
<th>secret key</th>
<th>public key</th>
<th>ciphertext</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrodoKEM-640</td>
<td>10,272</td>
<td>9,616</td>
<td>9,720</td>
</tr>
<tr>
<td>FrodoKEM-976</td>
<td>15,664</td>
<td>15,632</td>
<td>15,744</td>
</tr>
<tr>
<td>FrodoKEM-1344</td>
<td>21,568</td>
<td>21,520</td>
<td>21,632</td>
</tr>
</tbody>
</table>

- Speed (in kilocycles, 3.4GHz Intel Core i7-6700 Skylake, AES-NI):

<table>
<thead>
<tr>
<th></th>
<th>KeyGen</th>
<th>Encaps</th>
<th>Decaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrodoKEM-640</td>
<td>1,384</td>
<td>1,858</td>
<td>1,749</td>
</tr>
<tr>
<td>FrodoKEM-976</td>
<td>2,820</td>
<td>3,559</td>
<td>3,400</td>
</tr>
<tr>
<td>FrodoKEM-1344</td>
<td>4,756</td>
<td>5,981</td>
<td>5,748</td>
</tr>
</tbody>
</table>

- Cache $\mathbf{A} \leftarrow \text{seed}_A$ for pk lifetime: save $\approx 40\%$ in Encaps/Decaps
Parting Thought

FrodoKEM’s security derives from plain *Learning With Errors* on algebraically unstructured lattices, parameterized cautiously to avoid known risk categories, and to conform to a worst-case/average-case reduction.

https://FrodoKEM.org

Thanks!