Hardware Root-of-Trust for Cyber Security

Mark M. Tehranipoor

Intel Charles E. Young Endowed Chair Professor in Cybersecurity Director, Florida Institute for Cybersecurity Research Electrical and Computer Engineering Department

Example Hardware Attacks

The Big Hack

Bloomberg Businessweek

October 4, 2018

The Big Hack: How China Used a Tiny Chip to Infiltrate U.S. Companies

LIBERTY 2018

Bloomberg Businesswe

The Big Hack

How China used a tiny chip to infiltrate America's top companies

SoC Security is a Challenge

Hardware Trojans

- Malicious modification of design by adversaries
- Inserted by rogue employees of design house or foundry
- Intentionally introduced → Denial of Service, information leakage

Information Leakage

- Created intentionally by 3PIP vendor or induced unintentionally by CAD tools
- Reveal of information to unauthorized parties

Existing Security Threats

Side Channel

- No modification of design
- Extraction of secret information through communication channels of ICs

Exploitation of Test/Debug Infrastructure

- Scan, Compression, JTAG etc.
- Exploitation of controllability and observability of a design maliciously
- Power/Clock glitch, temperature variation, light/leaser/EM injection by malicious intention

Fault Injection

 Violation of confidentiality, integrity, and etc. All Rights Reserved – University of Florida

Understand Supply Chain Vulnerabilities

Solutions, with Lifecycle in Mind

SoC

Design

Foundry

Packaging &

Distribution

End-user

SoC

Integrator

Protect IP

Logic Locking or Obfuscation

Runs of Key gates-

- □ keys gates connected back-to-back
- K1, K2 forms a run that can be replaced by K3

Dominating Key gates-

- □ K2 lies on every path from K1 to outputs
- □ K2 is dominating key gate whose bit value can only be determined after muting K1

□ Mutable convergent Key gates-

K1 & K2 converges at some other gate, such that K1's bit value can be determined by muting K2 and vice versa

Logic Locking

- Inserting key gates to lock the design and functionality of the chip
- Writing the correct key in a tamper-proof non-volatile memory on the chip after fabrication to unlock the functionality of chip

Research

A number of vulnerabilities must be addressed to make **logic locking** a viable technology

Defense-in-Depth

To defend a system against any particular attack using several independent methods

Defense-in-Depth for Protecting Obfuscation

Layer 1: Trojan Scanner

Protect Assets

Asset: A resource of value worth protecting from an adversary

Security Assets in SoCs:

- On-device keys (developer/OEM)
- Device configuration
- Manufacturer Firmware
- Application software
- On-device sensitive data
- Communication credentials
- Random number or entropy
- E-fuse,
- PUF, and more...

Source: Intel

Protect Assets: Strong Algorithms, Weak Implementation

Algorithms, architectures, and policies could be impacted by design methods that do not understand Security!

Vulnerabilities

- Information Leakage
- Side Channel Leakage
- Fault Injection
- IP Tampering, Trojan Insertion

Accesses/attack surfaces

- Remote Access (E.g., WiFi, Ethernet, Zigbee, etc.)
- PCB Access (E.g., JTAG and Debug ports)
- Physical Access

- Modeling an asset as a stuck at fault
- Utilize automatic test pattern generation algorithms to detect that fault
- A successful detection \rightarrow Existence of information flow

We need to identify all observe points \rightarrow Asset can be observed

Encryption Algorithm	Design	Seq. Elements	Observable Points	Distance		Stimulus	
				Min	Мах	Min	Мах
AES	high speed	10769	2	2	3	5	7
	small area	2575	4	2	2	6	6
	ultra-high speed	6720	2	0	1	2	3
Single-DES	small area	64	32	11	15	15	17
Triple-DES	small area	128	48	10	12	29	33
	high speed	8808	2	2	2	3	3
RSA	basic	555	32	4	3	6	6
PRESENT	light ware	149	2	2	2	3	3

Takeaways

- All implementation of AES, RSA and PRESENT encryption modules have vulnerability due to DFT insertion
- ► The 'Distance' and 'Stimulus' → quantitative measure of vulnerability
- **Higher value** \rightarrow less vulnerable

Power Side Channel Attacks

Block Leakage Analysis

Security Rule Check

Properties Model **Establishing Secure** Rules Metric **Design** Infrastructure Threat **Vulnerabilities** Weaknesses **Development of** 2 Assets Security Rules and **Metrics Development of Security-aware** 3 **Automated CAD Tools** 4 **Experimental Security Validation**

24

Objective: Provide automated security assessment and possible countermeasures of given designs for target vulnerabilities

<u>Outcomes</u>: Comprehensive set of formally defined transaction rules with security guarantees and data protection

Chip Backside Is A New Backdoor

- Frontside: Multiple interconnect layers obstruct the optical path to transistor devices
- Backside: Active devices are directly accessible
- + Photon Emission
- + Laser Stimulation/Fault Injection
- + Optical Contactless Probing

Attacking Bitstream Encryption of FPGAs

- Device under Test (DUT): Xilinx Kintex 7 development board
 - Chip's technology: 28 nm
 - No chip preparation (e.g., depackaging, silicon polishing, etc.)
- Optical Setup: Hamamatsu PHEMOS-1000
 - Laser wavelength: 1.3 μ m
 - Laser spot size: >1 μ m

- Non-destructive
- Non-invasive
- No Footprint

Localizing the Configuration Logic

Xilinx Kintex 7 in flip-chip package

Image acquisition with a infra-red laser scanning microscope

Tajik, S., Lohrke, H., Seifert, J. P., & Boit, C. "On the Power of Optical Contactless Probing: Attacking Bitstream Encryption of FPGAs," In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.

Localizing the Configuration Logic

Random Logic

Localizing Decryption Core using EOFM

Clock activity for unencrypted bitstream

Localizing Decryption Core using EOFM

Clock activity for encrypted bitstream

Locations in AES output port

Key Extraction

- Protection
 - Circuit Level Solutions
 - Device Level solutions
 - Material Level Solutions

Protect the Supply Chain

Device-to-System

OCM: Enrollment & Ownership Release

PCB Assembler: Verification & Ownership Acquire

AutoBoM: External Visual Inspection of PCB

Auto3D: Internal Inspection of PCB

X-ray CT

- Parameter
 Optimization
- Sample Preparation and Filtering

CAD File Generation

- Vectorization
- PCB CAD File (PCB, DWG, DXF, etc..)

Nondestructive!

Image Processing and Segmentation

- Separate Layers
- Traces
- Vias w/ Pads
- Vias w/ Anti-Pads
- Conductive Planes

PCB Analysis

- Trace timing
- Signal integrity
- Power integrity
- Electromagnetic
 Interference
- Thermal Footprint
- Security vulnerabilities

Non-destructive Reverse Engineering

Florida Institute for Cybersecurity (FICS) Research

Designed-in security

Standards: Logic Locking, SCA, Backside,

Provenance, Traceability

- <u>Automation</u>
 - Reduce complexity & cost
- Design with life cycle in mind
 - · Device \rightarrow Systems
 - Traceability & provenance

semiconductors

• Hardware upgrade \rightarrow Zero day

Powerful but low cost inspection

