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Example Hardware Attacks

Trojans Untrusted Foundry Counterfeit ICs Physical Attack

Reverse EngineeringFault InjectionSide-channel Fake Parts
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The Big Hack

October 4, 2018



All Rights Reserved – University of Florida

SoC Security is a Challenge

Aggressive time-to-
market 

Tens of IPs from
3P vendors

Tens of billions
transistors

Many custom/legacy 
functionality

Designed around 
the globe

Many security
critical assets



All Rights Reserved – University of Florida

 Power/Clock glitch, temperature variation, light/leaser/EM 
injection by malicious intention

 Violation of confidentiality, integrity, and etc.

 Scan, Compression, JTAG etc.
 Exploitation of controllability and

observability of a design maliciously

 No modification of design
 Extraction of secret information through 

communication channels of ICs
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Possible Attacks

Side Channel

Information Leakage

Hardware Trojans

Exploitation of 
Test/Debug Infrastructure

Fault Injection

Existing Security Threats
 Malicious modification of design by 

adversaries
 Inserted by rogue employees of      

design house or foundry
 Intentionally introduced Denial of 

Service, information leakage

 Created intentionally by 3PIP vendor
or induced unintentionally by CAD tools

 Reveal of information to unauthorized parties
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Security along SoC Design Life-cycle
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Alg/Arch. Planning ProductionSpecification Integration (RTLLayout) Tape-out / Silicon

Risk/Security 
Assessment

Security Arch. 
& Policies

Security 
Validation

Security 
Validation

Security 
Validation

Pre-Silicon Post-Silicon

Risk 
Assessment

Includes definition 
of assets, threat 

model, 
adversaries, 
and security 

policies

Secure Architecture
Threat Modeling; 

Define architecture 
support for security; 
Review architecture 

level security 
Policies

Pre-silicon Security 
Verification:

Threat Modeling; Design 
review; Security verification 
against attacks at different 

stages of the design 
process; 

Post-Silicon 
Security 

Verification:
Fuzzy test, 
Negative 
test, and 

penetration 
test
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Security along SoC Design Life-cycle
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Alg/Arch. Planning ProductionSpecification Integration (RTLLayout) Tape-out / Silicon

Risk/Security 
Assessment

Security Arch. 
& Policies

Security 
Validation

Security 
Validation

Security 
Validation

Pre-Silicon Post-Silicon

3PIPs

IPs

RTL Netlist Layout GDSII
Fab

D
FT/D

FD
Insertion

Synthesis

Physical
D

esign
Gate Level Netlist Physical LayoutRegister Transfer 

Level
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Understand Supply Chain Vulnerabilities
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Solutions, with Lifecycle in Mind
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Protect 
the IP

Protect 
the Assets

Protect 
the Supply Chain
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Protect IP
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Logic Locking or Obfuscation
 Runs of Key gates-
 keys gates connected back-to-back
 K1, K2 forms a run that can be replaced by 

K3

 Dominating Key gates-
 K2 lies on every path from K1 to outputs
 K2 is dominating key gate whose bit value 

can only be determined after muting K1

 Mutable convergent Key gates-
 K1 & K2 converges at some other gate, 

such that K1’s bit value can be determined 
by muting K2 and vice versa
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c

a
b

Tamper-proof 
Memory 

Y

Key
gate

Key
gate

Protect IP, Against Piracy
Logic Locking
• Inserting key gates to lock the design and functionality of the chip

• Writing the correct key in a tamper-proof non-volatile memory on the 
chip after fabrication to unlock the functionality of chip

Unlocked Chip

Trusted facility
Key Value
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1000101010

Cache

Potential Threats

Tamper-
Proof 

Memory

Register  
Block

U
se
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ef
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ed

 In
pu
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1000101010

SoC

Key 
gate

Key 
gate

A number of vulnerabilities must 
be addressed to make logic 
locking a viable technology

Scan Chains
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Defense-in-Depth 
To defend a system against any 
particular attack using several 

independent methods

14
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Defense-in-Depth for Protecting Obfuscation 
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Key
L1L1 L2L2 L3L3 L4L4 L5L5
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Layer 1: Trojan Scanner

Backside 
Thinned IC

SEM 
Imagining

Image 
Processing

Trojan 
Detection

• Outer package removal.
• Chemical de-capsulation
• Backside thinning ~ 0um

Setting Parameters
i. High Voltage (HV)
ii. Dwelling time (Speed)
iii. Field of View (FoV) / 

(Magnification)
iv. Resolution

Capturing Images
(a) IC Under Auth. (IUA)

Image Registration
• Noise Removal -

FFT BP filter
• Binarization -

Adaptive 
Thresholding

• Smoothening -
Gaussian Filter

• Flood Fill

Detection
• Optimized -

Structural 
SIMilarity Index  
(SSIM) algorithm.

• Threshold based 
image labelling of 
suspicious areas 
of chip.
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Protect Assets
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Asset: A resource of value worth protecting from an adversary

Source: Intel

Security Assets in SoCs:
On-device keys (developer/OEM)
Device configuration
Manufacturer Firmware
Application software
On-device sensitive data
Communication credentials
Random number or entropy
E-fuse, 
PUF, and more…

18

Security Assets
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Protect Assets: Strong Algorithms, Weak Implementation
Strong 

Algorithm & 
Architecture 

Weak 
Implementation &

Execution

Algorithms, architectures, and 
policies could be impacted by 
design methods that do not 

understand Security!

Accesses/attack surfaces
Remote Access (E.g., WiFi, 
Ethernet, Zigbee, etc.)
PCB Access (E.g., JTAG and 
Debug ports)
Physical Access

Vulnerabilities
• Information Leakage
• Side Channel Leakage
• Fault Injection
• IP Tampering, Trojan Insertion
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Gate Level -- Information Leakage

Modeling an asset as a stuck at fault 
Utilize automatic test pattern generation algorithms to detect that fault
A successful detection → Existence of information flow

20

We need to identify all observe points →
Asset can be observed
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Confidentiality Analysis

Takeaways
All implementation of AES, RSA and PRESENT encryption modules have vulnerability 
due to DFT insertion
The ‘Distance’ and ‘Stimulus’  quantitative measure of vulnerability

Higher value  less vulnerable

21

Encryption
Algorithm

Design Seq.
Elements

Observable
Points

Distance Stimulus

Min Max Min Max

AES
high speed 10769 2 2 3 5 7
small area 2575 4 2 2 6 6

ultra-high speed 6720 2 0 1 2 3
Single-DES small area 64 32 11 15 15 17

Triple-DES small area 128 48 10 12 29 33
high speed 8808 2 2 2 3 3

RSA basic 555 32 4 3 6 6
PRESENT light ware 149 2 2 2 3 3
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Power Side Channel Attacks
November 4, 2020
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Block Leakage Analysis
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Security Rule Check

24

Experimental Security Validation4

Development of
Security Rules and 
Metrics

2

Establishing Secure 
Design  Infrastructure

1

A
R

C
H

S

3 Development of Security-aware 
Automated CAD Tools
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Security Rule Check
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Objective: Provide automated security assessment and possible 
countermeasures of given designs for target vulnerabilities

RTL Gate Layout

RTL level 
ARCHS

(ARCHS-R)

Gate level 
ARCHS

(ARCHS-G)

Layout level 
ARCHS

(ARCHS-L)

Trojan Insertion 
Vulnerability 

Assessment (TIVA)
Information

Flow Security (IFS)

Microprobing
Vulnerability 
Assessment

Outcomes: Comprehensive set of formally defined transaction rules 
with security guarantees and data protection

Security Rules & Metrics
User Input and Constraints
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Chip Backside Is A New Backdoor
• Frontside: Multiple interconnect layers 

obstruct the optical path to transistor 
devices

• Backside: Active devices are directly 
accessible

 Photon Emission

 Laser Stimulation/Fault Injection

 Optical Contactless Probing

Source: C. Boit et. al.

Hamamatsu PHEMOS - 1000
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Attacking Bitstream Encryption of FPGAs

JTAG
BBRAM / eFuse

FPGA

AES DecryptorNVM
AES Encryptor

…

Design

Encrypted
bitstream

10111001010

Bitstream 

010101…

• Device under Test (DUT): Xilinx Kintex 7 development board
• Chip’s technology: 28 nm
• No chip preparation (e.g., depackaging, silicon polishing, etc.)

• Optical Setup: Hamamatsu PHEMOS-1000
• Laser wavelength: 1.3 𝜇𝜇m
• Laser spot size: >1 𝜇𝜇m

• Non-destructive
• Non-invasive
• No Footprint
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Localizing the Configuration Logic

Xilinx Kintex 7 in flip-chip package Image acquisition with a infra-red laser 
scanning microscope 

Tajik, S., Lohrke, H., Seifert, J. P., & Boit, C. "On the Power of Optical Contactless Probing: Attacking Bitstream Encryption of FPGAs," In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
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Localizing the Configuration Logic

Random Logic
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Localizing Decryption Core using EOFM

Main CoreAES Core

Clock activity for unencrypted bitstream
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Localizing Decryption Core using EOFM

Main CoreAES Core

Clock activity for encrypted bitstream
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Locating the plaintext data 

Locations in AES output port 
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Key Extraction

BBRAM / eFuse

FPGA

AES DecryptorNVM

Encrypted
bitstream

10111001010

Bitstream 

010101…

OBIRCH
(TLS)

key = 
0xd781b86f274630b561f39c9736f512eb

0adf714f0d5c836c7a76ff627aca4923 

• Protection
• Circuit Level Solutions

• Device Level solutions

• Material Level Solutions

Target Nets Shield Nets
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Protect the Supply Chain
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Device-to-System

35

IC Authentication PCB Authentication Subsystem Authentication
Hardware & Firmware 

Self Authentication

35



All Rights Reserved – University of Florida

OCM: Enrollment & Ownership Release

36
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PCB Assembler: Verification & Ownership Acquire 

37
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AutoBoM: External Visual Inspection of PCB

Optical 
Microscopy

Image 
Pre-processing

Bill of Material
• Chips
• Resistors
• Capacitors
• Ports

Analysis and 
Defect 
Recognition
• Chips
• Discrete Components
• Solder
• Contacts
• PCB

Intelligent Microscopy for 
even lower time/cost!

Smart phone 
w/ adapter
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X-ray CT
• Parameter 
Optimization

• Sample 
Preparation and 
Filtering

Image Processing 
and Segmentation
• Separate Layers
• Traces
• Vias w/ Pads
• Vias w/ Anti-Pads
• Conductive Planes

CAD File 
Generation
• Vectorization
• PCB CAD File 
(PCB, DWG, 
DXF, etc..)

PCB Analysis
• Trace timing
• Signal integrity
• Power integrity
• Electromagnetic 
Interference

• Thermal Footprint
• Security vulnerabilities

Auto3D: Internal Inspection of PCB

Nondestructive!

Slices
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Non-destructive Reverse Engineering



All Rights Reserved – University of Florida

SCAN Lab at FICS Research Institute

Florida Institute for Cybersecurity (FICS) Research 
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• Designed-in security
• Standards: Logic Locking, SCA, Backside, 

Provenance, Traceability

• Automation
• Reduce complexity & cost

• Design with life cycle in mind
• Device  Systems

• Traceability & provenance

Recommendations
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• Powerful but low cost inspection

• Hardware upgrade  Zero day

• Smart devices  DT for secure 
semiconductors

Recommendations
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