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Sponges [BDPV07] 
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• Cryptographic hash function 
• SHA-3, XOFs, lightweight hashing, . . . 
• Behaves as RO up to query complexity ≈ 2c/2 [BDPV08] 
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Keyed Duplex

• Authenticated encryption

• Multiple CAESAR and NIST LWC submissions

Keying Sponges 

Keyed Sponge 

• PRF(K, P ) = Sponge(KkP ) 

• Message authentication 

• Keystream generation 
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• Inner-Keyed Sponge [CDHKN12,ADMV15,NY16]

• Full-Keyed Sponge [BDPV12,GPT15,MRV15]

Evolution of Keyed Sponges 

M pad trunc Z

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

KkP pad trunc Z 

r 0 

p p p p p p 

c 0 

• Outer-Keyed Sponge [BDPV11,ADMV15,NY16,Men18] 
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• Outer-Keyed Duplex [BDPV11]

• Full-Keyed Duplex [MRV15,DMV17]

Evolution of Keyed Duplexes 
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• Unkeyed Duplex [BDPV11] 
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• Full-Keyed Duplex [MRV15,DMV17]
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• Unkeyed Duplex [BDPV11] 
• Outer-Keyed Duplex [BDPV11] 
• Full-Keyed Duplex [MRV15,DMV17] 
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• M : data complexity (calls to construction)

• N : time complexity (calls to primitive)

• qIV : max # init calls for single IV

• L: # queries with repeated path (e.g., nonce-violation)

• Ω: # queries with overwriting outer part (e.g., RUP)

• νMr,c: some multicollision coe°cient → often small constant

Simpli˝ed Security Bound

qIVN

2k
+

(L+Ω+ νMr,c)N

2c

Security of Generalized Keyed Duplex [DMV17] 
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Security of Generalized Keyed Duplex [DMV17] 
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• M : data complexity (calls to construction) 
Simpli˝ed Security Bound • N : time complexity (calls to primitive) 

• qIV : max # init calls for single IV (L +Ω+ νM )N qIV N r,c
+ • L: # queries with repeated path (e.g., nonce-violation) 2k 2c 

• Ω: # queries with overwriting outer part (e.g., RUP) 

• νM : some multicollision coe°cient → often small constant r,c
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Outline 

Leakage Resilience of the Duplex Construction 

Security of the Su°x Keyed Sponge 

Application to ISAP 

Conclusion 
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Is keyed duplex secure under leakage?

Leakage Resilience of Keyed Duplex 
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` ` `

• Permutation p repeatedly evaluated on secret state 

• Any evaluation of p may leak information 

9 / 28 



Leakage Resilience of Keyed Duplex 

p

K[δ]

IV

0

leftr(P )

rightc(P )

flagZ

r r

c

p
0

leftr(P )

rightc(P )

flagZ

r r

c

p

. . .

. . .

` ` `

• Permutation p repeatedly evaluated on secret state 

• Any evaluation of p may leak information 

Is keyed duplex secure under leakage? 

9 / 28 



• Sprev

Formalizing Leakage 
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• L is any ˝xed leakage function (non-adaptive leakage) 

• For each evaluation of p: L leaks λ bits of (Sprev, Snext) 
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In˛uence of Leakage 
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• Suppose Sprev invoked at most R times 

• At most R + 1 leakages of Sprev 

• Min-entropy of Sprev: at least c − (R + 1)λ 
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Leakage Resilience of Keyed Duplex 
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• M : data complexity (calls to construction) 
Simpli˝ed Security Bound • N : time complexity (calls to primitive) 

• qIV : max # init calls for single IV (L +Ω+ νM )N qIV N r,c
+ • qδ: maximum # init calls for single δ 2k−qδ λ 2c−(R+1)λ 

• L: # queries with repeated path (e.g., nonce-violation) 

• Ω: # queries with overwriting outer part (e.g., RUP) 

• R: max # duplexing calls for single non-empty subpath 

• νM : some multicollision coe°cient → often small constant r,c
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qδ ≤ # allowed IV 's Limit L+ Ω or limit R?

Application: Managing Leakage 

Simpli˝ed Security Bound 

(L +Ω+ νM )N qIV N r,c
+ 

2k−qδ λ 2c−(R+1)λ 
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• Gain entropy in KD1 from nonce at small rate

• Final state of KD1 has high entropy (w.h.p.)

• Inner part of state of KD1 forms key to KD2

• Encrypt in KD2 at high rate while maintaining high entropy (w.h.p.)

Application: Leakage Resilient Encryption (1) 

p1

K

IV

ℵk

1

p2

C1

r

c

ℵ1

1

p1

. . .

. . .b − 1 b − 1

Gaining Entropy Maintaining Entropy

P1

p2

. . .

. . .

k

b − k

14 / 28 



• Final state of KD1 has high entropy (w.h.p.)

• Inner part of state of KD1 forms key to KD2

• Encrypt in KD2 at high rate while maintaining high entropy (w.h.p.)

Application: Leakage Resilient Encryption (1) 

p1

K

IV

ℵk

1

p2

C1

r

c

ℵ1

1

p1

. . .

. . .b − 1 b − 1

Gaining Entropy Maintaining Entropy

P1

p2

. . .

. . .

k

b − k

• Gain entropy in KD1 from nonce at small rate 

14 / 28 



• Inner part of state of KD1 forms key to KD2

• Encrypt in KD2 at high rate while maintaining high entropy (w.h.p.)

Application: Leakage Resilient Encryption (1) 

p1

K

IV

ℵk

1

p2

C1

r

c

ℵ1

1

p1

. . .

. . .b − 1 b − 1

Gaining Entropy Maintaining Entropy

P1

p2

. . .

. . .

k

b − k

• Gain entropy in KD1 from nonce at small rate 

• Final state of KD1 has high entropy (w.h.p.) 

14 / 28 



• Encrypt in KD2 at high rate while maintaining high entropy (w.h.p.)

Application: Leakage Resilient Encryption (1) 

p1

K

IV

ℵk

1

p2

C1

r

c

ℵ1

1

p1

. . .

. . .b − 1 b − 1

Gaining Entropy Maintaining Entropy

P1

p2

. . .

. . .

k

b − k

• Gain entropy in KD1 from nonce at small rate 

• Final state of KD1 has high entropy (w.h.p.) 

• Inner part of state of KD1 forms key to KD2 

14 / 28 



Application: Leakage Resilient Encryption (1) 

p1

K

IV

ℵk

1

p2

C1

r

c

ℵ1

1

p1

. . .

. . .b − 1 b − 1

Gaining Entropy Maintaining Entropy

P1

p2

. . .

. . .

k

b − k

• Gain entropy in KD1 from nonce at small rate 

• Final state of KD1 has high entropy (w.h.p.) 

• Inner part of state of KD1 forms key to KD2 

• Encrypt in KD2 at high rate while maintaining high entropy (w.h.p.) 

14 / 28 



Advnalr
KD1

(D) . QN
2b−4λ + N2

2b
+ N

2k−2λ Advnalr
KD2

(D) .
νMr,cN

2c−2λ + QN
2b−4λ + N2

2b

Application: Leakage Resilient Encryption (2) 

p1

K

IV

ℵk

1

p2

C1

r

c

ℵ1

1

p1

. . .

. . .b − 1 b − 1

Gaining Entropy Maintaining Entropy

P1

p2

. . .

. . .

k

b − k

• Paths may repeat: L + Ω arbitrary • Unique paths: L + Ω = 0 
• Small rate: R + 1 ≤ 21 + 1 ≤ 3 • Large rate: R + 1 = 2 
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Application: Leakage Resilient Encryption (2) 

• Paths may repeat: L +Ω arbitrary • Unique paths: L +Ω = 0 
• Small rate: R + 1 ≤ 21 + 1 ≤ 3 • Large rate: R + 1 = 2 
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Application: Leakage Resilient Encryption (3) 
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Outline 

Leakage Resilience of the Duplex Construction 

Security of the Su°x Keyed Sponge 

Application to ISAP 

Conclusion 
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Minimizing leakage of keyed sponge?
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• Permutation p repeatedly evaluated on secret state 

• Any evaluation of p may leak information 
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Hash-then-MAC 

P hash F T

K

Typical Approach 

• Hash function is unkeyed → nothing to be protected 

• Keyed function F applied to ˝xed-size input 

• Hash output (hence F input) must be at least 2k bits for k-bit security 
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SuKS versus Full-Keyed Sponge

• No full-state absorption

• Side-channel leakage limited

• s, t arbitrary (typical: s = t = c/2)

SuKS versus Hash-then-MAC

• State of keyed function half as large

• G need not be cryptographically
strong (a XOR su°ces)

• Single cryptographic primitive needed
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• No full-state absorption • State of keyed function half as large 
• Side-channel leakage limited • G need not be cryptographically 

strong (a XOR su°ces) • s, t arbitrary (typical: s = t = c/2) 
• Single cryptographic primitive needed 
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inner collision

�break at G�, bounds primitive queries with same inner part

�break at T �,
bounds construction
queries with same tag

Security of SuKS 
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• k, s, t ≤ b 

• G is 2−δ-uniform and 2−�-universal 

2(N−q) 
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Adv (D) ≤ + + F 2c 2min{δ,ε} 2b−t 
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(b, c, r, k) = (400, 256, 144, 128)
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Application to MAC Part of ISAP [DEMMMPU19] 
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(b, c, r, k) = (400, 256, 144, 128) 
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= µ• νb−s,s 272,128 ≤ 3 
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Application to MAC Part of ISAP [DEMMMPU19] 
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ISAP 

• LWC candidate [DEMMMPU19] 

• Originally proposed at FSE 2017 [DEMMU17] 

• Sponge/duplex-based authenticated encryption mode 

• Instantiation: 
• Keccak-p[400] 
• Ascon-p 

• Carefully selected capacities and rates: 
• Protection against DPA 
• Hardening against fault attacks: DFA, SFA, SIFA 
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
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argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
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M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
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discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.
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M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
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IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
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discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.
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M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
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In this brief note, we show how the leakage resilience of the keyed duplex and the
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all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
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argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
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M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.
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a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.
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Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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Leakage Resilience

• Follows from:
• Leakage resilience of Keyed Duplex [DM19a]

• Leakage resilience of Su°x Keyed Sponge [DM19b]

• Proof in alternative model given by Guo et al. [GPPS19]

Thank you for your attention!

Conclusion 

ISAP 

• Built-in security against side-channel and fault attacks 
• Higher order security without higher order masking! 
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