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K and 𝒪ΔK
Imaginary Quadratic Fields
▶ K = Q(√ΔK), ΔK < 0
▶ Fundamental Discriminant:

▶ ΔK ≡ 1 (mod 4) square-free
▶ ΔK ≡ 0 (mod 4) and ΔK/4 ≡ 2, 3 (mod 4) square-free

Ring of integers of K

▶ 𝒪ΔK : ring of integers of K, the maximal order,

𝒪ΔK = Z +
ΔK + √ΔK

2 Z
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Ideals

Ideals of 𝒪ΔK
▶ Fractional Ideals: a ⊂ K such that ∃α ∈ K ∗, α a is an ideal of
𝒪ΔK

▶ Invertible Fractional Ideals: a such that there exists b such
that a b = 𝒪ΔK

▶ Principal Fractional Ideals: α𝒪ΔK where α ∈ K ∗

Notation
▶ I(𝒪ΔK) : group of Invertible Fractional Ideals of 𝒪ΔK
▶ P(𝒪ΔK) : sub-group of Principal Ideals
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Class Group

C(𝒪ΔK) ∶= I(𝒪ΔK)/P(𝒪ΔK)

its (finite) cardinal is the class number denoted ℎ(𝒪ΔK)

▶ Equivalence relation:

a ∼ b ⟺ ∃ α ∈ K ∗, b = α a

▶ Class Number: On average ℎ(𝒪ΔK) ≈ 0.461559√|ΔK|

6/29



Representation of the Classes

Representation of (primitive) ideals of 𝒪ΔK

a  = 𝑎Z + −𝑏 + √ΔK2 Z =∶ (𝑎, 𝑏)

with 𝑎 ∈ N and 𝑏 ∈ Z such that 𝑏2 = ΔK mod 4𝑎

Representation of classes of C(𝒪ΔK)
▶ (𝑎, 𝑏) is reduced if −𝑎 < 𝑏 ≤ 𝑎 ≤ 𝑐 and 𝑏 ≥ 0 if 𝑎 = 𝑐 where 𝑐 is

s.t. ΔK = 𝑏2 − 4𝑎𝑐; moreover 𝑎 < √|ΔK|/3

▶ A unique reduced ideal per class

▶ Representation of an element of C(𝒪ΔK): same bit size as |ΔK|
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Computation in C(𝒪ΔK)

▶ Product of ideals followed by reduction

▶ Efficient algorithms known since Gauss and Lagrange:
reduction and composition of Binary Quadratic Forms

▶ Quadratic complexity or even quasi linear (Schönhage, 91)

▶ Inverse is for free: [(𝑎, 𝑏)]−1 = [(𝑎, −𝑏)]
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Hard Problems in Imaginary Quadratic Fields

▶ Computation of ℎ(𝒪ΔK), the structure of C(𝒪ΔK) and DL

▶ Sub exponential algorithm of Hafner and Mc-Curley (1989)

▶ Complexity L |ΔK|[1/2, 1 + 𝑜(1)]

▶ Recent record by Beullens, Kleinjung and Vercauteren (May
2019) : structure of C(𝒪ΔK) with a 512 bits |ΔK| (52 core years)

▶ Bit sizes for factoring N vs computing DL in C(𝒪ΔK) :
Security Parameters N ΔK

112 2048 1348
128 3072 1827
192 7680 3598
256 15360 5971

Biasse, Jacobson and Silvester (10)
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Crypto based on DL in C(𝒪ΔK)
▶ Buchmann and Williams (88): Diffie-Hellman key exchange

and ElGamal

▶ DSA and GQ signatures adaptations : Biehl, Buchmann,
Hamdy, and Meyer (01-02)

▶ Düllmann, Hamdy, Möller, Pohst, Schielzeth, Vollmer
(90-07): Implementation
▶ Construct ΔK a fundamental negative discriminant, in order

to minimize to 2-Sylow subgroup of C(𝒪ΔK ); e.g., Δ𝑘 = −𝑞,
𝑞 ≡ 3 (mod 4), 𝑞 prime : ℎ(𝒪ΔK ) is odd

▶ Choose 𝑔 a random class of C(𝒪ΔK )
⇝ order of 𝑔 will be close to ℎ(𝒪ΔK ) ≈ √|ΔK|

▶ Work in the cyclic group G = ⟨𝑔⟩ ⊂ C(𝒪ΔK )

▶ The order of 𝑔 is unknown!
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Paradox of Unknown Order

▶ DL in a cyclic group G = ⟨𝑔⟩ ⊂ C(𝒪ΔK) of unknown order 𝑠

▶ 𝑠 is divisible by small primes with non negligible probability!

▶ But 𝑠 not smooth for cryptographic sizes: no algorithm
similar to the (𝑝 − 1) method

▶ Uniform sampling in G possible with an upper bound on
ℎ(𝒪ΔK) ⩾ 𝑠

▶ Can not decide if an element of C(𝒪ΔK) is in G
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Paradox of Unknown Order

▶ Cryptographic accumulators (Lipmaa 12), verifiable delay
functions (Wesolowski 19), and many others applications
without trusted setup

▶ Example of verifiable delay functions:
▶ Slow to compute and easy to verify
▶ Based on computing 𝑔2𝑡 without knowing the order of 𝑔
▶ RSA based construction: someone knows φ(𝑛)! Needs some

trusted setup.
▶ With class groups, ℎ(𝒪ΔK ) is really unknown to anyone!

▶ Another application: linearly homomorphic encryption
modulo a prime.
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Imaginary Quadratic Orders
Definition
▶ K = Q(√ΔK),
▶ 𝒪 is a subring of K containing 1 and 𝒪 is a free Z-module of

rank 2

Characterisation
▶ 𝒪ΔK : ring of integers of K is the maximal order

▶ 𝒪 ⊂ 𝒪ΔK , ℓ ∶= [𝒪ΔK ∶ 𝒪 ] is the conductor,

𝒪 = Z + Δℓ + √Δℓ2 Z

Δℓ = ℓ2ΔK is the non fundamental discriminant of 𝒪Δℓ ∶= 𝒪

Can extend the definition of class groups: C(𝒪Δℓ)
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Class Groups of Non Maximal Orders

▶ Δℓ ∶= ℓ2ΔK

▶ There exists a surjection

φ̄ℓ ∶ C(𝒪Δℓ) C(𝒪ΔK)

▶ If ΔK < 0, ΔK ≠ −3, −4,

ℎ(𝒪Δℓ) = ℎ(𝒪ΔK) × ℓ
𝑝∣ℓ

1 − 
ΔK
𝑝 

1
𝑝
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NICE Family

▶ Paulus Takagi 98: crypto with non maximal orders

▶ ∆K = −𝑝, ∆𝑞 = −𝑝𝑞2, 𝑝, 𝑞 primes and 𝑝 ≡ 3 (mod 4)

ℎ(𝒪Δ𝑞) = ℎ(𝒪ΔK) × 𝑞 − 
ΔK
𝑞 

▶ Public key: Δ𝑞 and ℎ ∈ ker φ̄𝑞, with φ̄𝑞 ∶ C(𝒪Δ𝑞) → C(𝒪ΔK)

▶ Secret key: 𝑞

▶ Cryptanalysis : C., Joux, Laguillaumie, Nguyen (09):
▶ Each class of ker φ̄𝑞 contains a non reduced ideal (𝑞2, 𝑘𝑞)
▶ From ℎ ∈ ker φ̄𝑞, we find this ideal in polynomial time
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A Subgroup with an Easy DL

▶ C. Laguillaumie 15

▶ ∆K = −𝑝𝑞, ∆𝑞 = −𝑝𝑞3, 𝑝, 𝑞 primes and 𝑝𝑞 ≡ 3 (mod 4)

ℎ(𝒪Δ𝑞) = ℎ(𝒪ΔK) × 𝑞

▶ Let 𝑓 = [(𝑞2, 𝑞)] ∈ C(𝒪Δ𝑞)

▶ F = ⟨𝑓⟩ is of order 𝑞, and

𝑓𝑚 = [(𝑞2, −L(𝑚)𝑞)]

where L(𝑚) ∈ [−𝑞, 𝑞] is odd and L(𝑚) ≡ 𝑚−1 (mod 𝑞)

▶ Moreover if 𝑝 > 4𝑞, the ideals of norm 𝑞2 are reduced
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Generation of a group with an easy DL subgroup
▶ 𝑞 a prime
▶ 𝑝 > 4𝑞, ΔK = −𝑝𝑞, ∆𝑞 = −𝑝𝑞3, with 𝑝𝑞 ≡ −1 (mod 4) and
(𝑝/𝑞) = −1

ℎ(𝒪Δ𝑞) = ℎ(𝒪ΔK) × 𝑞

we assume that gcd(𝑞, ℎ(𝒪ΔK)) = 1
▶ Let G be the subgroup of squares of C(𝒪Δ𝑞)
▶ 𝑔𝑞 = 𝑟𝑞 where 𝑟 is a random element of G
▶ 𝑓 = [(𝑞2, 𝑞)] ∈ G
▶ 𝑔 = 𝑔𝑞𝑓,G = ⟨𝑔⟩, F = ⟨𝑓⟩, G𝑞 = ⟨𝑔𝑞⟩

G ≃ F × G𝑞

DL easy in F, G𝑞 has unknown order 𝑠 a divisor of ℎ(𝒪ΔK)

19/29



Outline

Class groups of Maximal Orders of Imaginary Quadratic Fields

Cryptography in Class Groups of Maximal Orders

Class Groups of non Maximal Orders

Linearly Homomorphic Encryption modulo a prime

20/29



Framework
Group with an easy discrete logarithm (DL) subgroup

▶ 𝑞 a prime
▶ G = ⟨𝑔⟩ cyclic group of order 𝑞 ⋅ 𝑠 such that gcd(𝑞, 𝑠) = 1
▶ F = ⟨𝑓⟩ subgroup of G of order 𝑞
▶ G𝑞 = ⟨𝑔𝑞⟩ = {𝑥𝑞, 𝑥 ∈ G} subgroup of G of order 𝑠,

G ≃ F × G𝑞

▶ DL is easy in F:
Given 𝑢 ∈ F, find 𝑚 ∈ Z/𝑞Z such that 𝑢 = 𝑓𝑚

▶ Inspired by Bresson, Catalano, Pointcheval / Camenisch,
Shoup (2003) : constructions over Paillier
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A Generic Linearly Homomorphic Encryption Scheme
▶ ℳ = Z/𝑞Z

▶ KeyGen:
𝑠𝑘 = 𝑥 ↩ 𝒟
𝑝𝑘 = ℎ ← 𝑔𝑥𝑞

▶ Encrypt:
𝑟 ↩ 𝒟
𝑐 = (𝑐1, 𝑐2) ← (𝑔𝑟𝑞, 𝑓𝑚ℎ𝑟)

▶ Decrypt:
DL𝑓(𝑐2/𝑐𝑥1)⇝ 𝑚

▶ EvalSum:

(𝑐1𝑐′1, 𝑐2𝑐′2) = (𝑔𝑟+𝑟
′

𝑞 , ℎ𝑟+𝑟′𝑓𝑚+𝑚′)

▶ EvalScal:

(𝑐α1 , 𝑐α2 ) = (𝑔𝑟α𝑞 , ℎ𝑟α𝑓𝑚α)

C., Laguillaumie, Tucker (2018)
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Indistinguishability à la Cramer Shoup under HSM

𝑐 = (𝑐1, 𝑐2) =  𝑔𝑟𝑞 , 𝑓𝑚 ℎ𝑟 , ℎ = 𝑔𝑥𝑞, 𝑥, 𝑟 ↩ 𝒟

𝑐 = (𝑐1, 𝑐2) =  Z , 𝑓𝑚 Z𝑥 , ℎ = 𝑔𝑥𝑞, 𝑥 ↩ 𝒟, Z ↩ G

Smoothness argument:

▶ 𝒟 close to uniform modulo 𝑞𝑠 and gcd(𝑞, 𝑠) = 1:
(𝑥 mod 𝑠) fixed by ℎ but (𝑥 mod 𝑞) remains uniformly

distributed

▶ Z = 𝑓𝑎Y for some fixed 𝑎 ∈ Z/𝑞Z, Y ∈ G𝑞

𝑐2 = 𝑓𝑚Z𝑥 = 𝑓𝑚+𝑎𝑥Y𝑥

⇝ 𝑚 is hidden!
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Smoothness argument:

▶ 𝒟 close to uniform modulo 𝑞𝑠 and gcd(𝑞, 𝑠) = 1:
(𝑥 mod 𝑠) fixed by ℎ but (𝑥 mod 𝑞) remains uniformly

distributed

▶ Z = 𝑓𝑎Y for some fixed 𝑎 ∈ Z/𝑞Z, Y ∈ G𝑞

𝑐2 = 𝑓𝑚Z𝑥 = 𝑓𝑚+𝑎𝑥Y𝑥
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Application: Two-Party ECDSA Signing
ECDSA
▶ Used to sign Bitcoin transactions
▶ Stealing signing key 𝑥 ⇝ immediate financial loss

▶ Public params: (𝔾, +), of prime order 𝑞, with generator P
▶ Secret Key: 𝑥 ↩ Z/𝑞Z and Public Key: Q ← 𝑥 ⋅ P

Two-Party ECDSA
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Two-Party ECDSA
𝑚 to be signed

𝑥1 𝑥2

σ signature of 𝑚
𝑥1, 𝑥2: shares of 𝑥 ; Public Key: Q ← 𝑥 ⋅ P
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Difficulty and some Previous works

Unfriendly Equation in ECDSA

𝑠 ← 𝑘−1 ⋅ (H(𝑚) + 𝑟 ⋅ 𝑥) mod 𝑞

Lindell (2017)
▶ Uses Paillier Linearly homomorphic encryption
▶ Homomorphic mod N an RSA integer (2048 bits)
▶ ECDSA uses operations mod 𝑞 (256 bits)
▶ Drawbacks: Costly range proof, loss in reduction or

interactive assumption
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Our Two-Party ECDSA Protocol

▶ C., Catalano, Laguillaumie, Savasta, Tucker (2019)

▶ Use a linearly homomorphic encryption scheme mod 𝑞
⇝ Remove the range proof and some technicalities

▶ Construction à la Cramer-Shoup: can use an argument based
on indistinguishability even if the simulation knows the
secret key

⇝ Tight security without interactive assumptions

▶ Better bandwidth and speed (for high level of security)
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Comparison: Primitives

▶ Paillier

Sec. Param. N (b) Expo in Z/N2Z (ms) Ciphertext (b)
112 2048 7 4096
128 3072 22 6144
192 7680 214 15360
256 15360 1196 30720

▶ C.-Laguillaumie

Sec. Param. ΔK (b) Expo in C(𝒪Δ𝑞) (ms) Ciphertext (b)
112 1348 32 3144
128 1827 55 4166
192 3598 212 7964
256 5971 623 12966

Timings with Pari C Library
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Comparison: Two-Party ECDSA

▶ Lindell

Curve Sec. KeyGen (s) Sign (s) KeyGen (kb) Sign (kb)
P-256 128 6.3 0.049 1 317 7.7
P-384 192 65 0.437 3 280 17.7
P-521 256 429 2.4 6 549 33.8

▶ C. Catalano, Laguillaumie, Savasta, Tucker

Curve Sec. KeyGen (s) Sign (s) KeyGen (kb) Sign (kb)
P-256 128 9.3 0.17 227 5.7
P-384 192 35 0.64 427 10.2
P-521 256 103 1.8 688 16.1

Timings with Pari C Library
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Questions?
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