Linear homomorphic encryption from class groups of quadratic fields

Guilhem Castagnos

Université de Bordeaux

NIST crypto reading club June 16, 2021

> université **BORDEAUX**





















## Outline

Class groups of Maximal Orders of Imaginary Quadratic Fields

Cryptography in Class Groups of Maximal Orders

Class Groups of non Maximal Orders

Linearly Homomorphic Encryption modulo a prime



**Imaginary Quadratic Fields** 

- $\blacktriangleright K = \mathbf{Q}(\sqrt{\Delta_K}), \Delta_K < 0$
- Fundamental Discriminant:
  - $\Delta_{\rm K} \equiv 1 \pmod{4}$  square-free
  - $\Delta_{\rm K} \equiv 0 \pmod{4}$  and  $\Delta_{\rm K}/4 \equiv 2, 3 \pmod{4}$  square-free

## Ring of integers of K

•  $\mathcal{O}_{\Delta_{\mathrm{K}}}$  : ring of integers of K, the maximal order,

$$\mathscr{O}_{\Delta_{\mathrm{K}}} = \mathbf{Z} + \frac{\Delta_{\mathrm{K}} + \sqrt{\Delta_{\mathrm{K}}}}{2} \mathbf{Z}$$

# Ideals

Ideals of  $\mathscr{O}_{\Delta_{\mathrm{K}}}$ 

- Fractional Ideals:  $a \subset K$  such that  $\exists \alpha \in K^*$ ,  $\alpha a$  is an ideal of  $\mathscr{O}_{\Delta_K}$
- Invertible Fractional Ideals: a such that there exists b such that a b = 𝒫<sub>ΔK</sub>
- Principal Fractional Ideals:  $\alpha \mathscr{O}_{\Delta_{\mathbf{K}}}$  where  $\alpha \in \mathbf{K}^*$

## Notation

- ►  $I(\mathscr{O}_{\Delta_{K}})$  : group of Invertible Fractional Ideals of  $\mathscr{O}_{\Delta_{K}}$
- ▶  $P(\mathscr{O}_{\Delta_K})$ : sub-group of Principal Ideals

# **Class Group**

$$\mathsf{C}(\mathcal{O}_{\Delta_{\mathsf{K}}}) := \mathsf{I}(\mathcal{O}_{\Delta_{\mathsf{K}}})/\mathsf{P}(\mathcal{O}_{\Delta_{\mathsf{K}}})$$

its (finite) cardinal is the class number denoted  $h(\mathscr{O}_{\Delta_{\mathbf{K}}})$ 

Equivalence relation:

$$\mathfrak{a} \sim \mathfrak{b} \iff \exists \alpha \in K^*, \ \mathfrak{b} = \alpha \mathfrak{a}$$

Class Number: On average  $h(\mathscr{O}_{\Delta_{\mathbf{K}}}) \approx 0.461559 \sqrt{|\Delta_{\mathbf{K}}|}$ 

# Representation of the Classes

Representation of (primitive) ideals of  $\mathscr{O}_{\Delta_{\mathsf{K}}}$ 

$$\mathbf{a} = a\mathbf{Z} + \frac{-b + \sqrt{\Delta_{\mathrm{K}}}}{2}\mathbf{Z} =: (a, b)$$

with  $a \in \mathbf{N}$  and  $b \in \mathbf{Z}$  such that  $b^2 = \Delta_K \mod 4a$ 

Representation of classes of  $C(\mathscr{O}_{\Delta_{\mathsf{K}}})$ 

- (*a*, *b*) is reduced if  $-a < b \le a \le c$  and  $b \ge 0$  if a = c where *c* is s.t.  $\Delta_{\mathrm{K}} = b^2 4ac$ ; moreover  $a < \sqrt{|\Delta_{\mathrm{K}}|/3}$
- A unique reduced ideal per class
- ▶ Representation of an element of  $C(\mathscr{O}_{\Delta_{K}})$ : same bit size as  $|\Delta_{K}|$



- Product of ideals followed by reduction
- Efficient algorithms known since Gauss and Lagrange: reduction and composition of Binary Quadratic Forms
- Quadratic complexity or even quasi linear (Schönhage, 91)
- Inverse is for free:  $[(a, b)]^{-1} = [(a, -b)]$



Class groups of Maximal Orders of Imaginary Quadratic Fields

Cryptography in Class Groups of Maximal Orders

Class Groups of non Maximal Orders

Linearly Homomorphic Encryption modulo a prime

# Hard Problems in Imaginary Quadratic Fields

- Computation of  $h(\mathcal{O}_{\Delta_{\mathbf{K}}})$ , the structure of  $C(\mathcal{O}_{\Delta_{\mathbf{K}}})$  and DL
- Sub exponential algorithm of Hafner and Mc-Curley (1989)
- Complexity  $L_{|\Delta_K|}[1/2, 1 + o(1)]$
- ► Recent record by Beullens, Kleinjung and Vercauteren (May 2019) : structure of  $C(\mathscr{O}_{\Delta_{K}})$  with a 512 bits  $|\Delta_{K}|$  (52 core years)
- ▶ Bit sizes for factoring N vs computing DL in  $C(\mathscr{O}_{\Delta_{K}})$ :

| Security Parameters | N     | $\Delta_{\rm K}$ |
|---------------------|-------|------------------|
| 112                 | 2048  | 1348             |
| 128                 | 3072  | 1827             |
| 192                 | 7680  | 3598             |
| 256                 | 15360 | 5971             |

Biasse, Jacobson and Silvester (10)

# Crypto based on DL in $C(\mathcal{O}_{\Delta_K})$

- Buchmann and Williams (88): Diffie-Hellman key exchange and ElGamal
- DSA and GQ signatures adaptations : Biehl, Buchmann, Hamdy, and Meyer (01-02)
- Düllmann, Hamdy, Möller, Pohst, Schielzeth, Vollmer (90-07): Implementation
  - Construct Δ<sub>K</sub> a fundamental negative discriminant, in order to minimize to 2-Sylow subgroup of C(𝒫<sub>Δ<sub>K</sub></sub>); e.g., Δ<sub>k</sub> = −q, q ≡ 3 (mod 4), q prime : h(𝒫<sub>Δ<sub>K</sub></sub>) is odd
  - ► Choose g a random class of  $C(\mathscr{O}_{\Delta_{K}})$  $\rightsquigarrow$  order of g will be close to  $h(\mathscr{O}_{\Delta_{K}}) \approx \sqrt{|\Delta_{K}|}$
  - ▶ Work in the cyclic group  $G = \langle g \rangle \subset C(\mathscr{O}_{\Delta_{K}})$
- The order of g is unknown!

## Paradox of Unknown Order 😀

- ► DL in a cyclic group  $G = \langle g \rangle \subset C(\mathscr{O}_{\Delta_K})$  of unknown order *s*
- ► *s* is divisible by small primes with non negligible probability!
- ▶ But s not smooth for cryptographic sizes: no algorithm similar to the (p − 1) method
- ▶ Uniform sampling in G possible with an upper bound on  $h(\mathscr{O}_{\Delta_{\mathrm{K}}}) \ge s$
- Can not decide if an element of  $C(\mathscr{O}_{\Delta_{\mathbf{K}}})$  is in G

# Paradox of Unknown Order 😁

- Cryptographic accumulators (Lipmaa 12), verifiable delay functions (Wesolowski 19), and many others applications without trusted setup
- Example of verifiable delay functions:
  - Slow to compute and easy to verify
  - Based on computing  $g^{2^t}$  without knowing the order of g
  - RSA based construction: someone knows φ(n)! Needs some trusted setup.
  - With class groups,  $h(\mathscr{O}_{\Delta_{\mathbf{K}}})$  is really unknown to anyone!
- Another application: linearly homomorphic encryption modulo a prime.

## Outline

Class groups of Maximal Orders of Imaginary Quadratic Fields

Cryptography in Class Groups of Maximal Orders

Class Groups of non Maximal Orders

Linearly Homomorphic Encryption modulo a prime

# Imaginary Quadratic Orders Definition

 $\blacktriangleright K = \mathbf{Q}(\sqrt{\Delta_K}),$ 

If is a subring of K containing 1 and I is a free Z-module of rank 2

### Characterisation

•  $\mathscr{O}_{\Delta_{\mathbf{K}}}$  : ring of integers of K is the maximal order

• 
$$\mathscr{O} \subset \mathscr{O}_{\Delta_{\mathrm{K}}}, \ell := [\mathscr{O}_{\Delta_{\mathrm{K}}} : \mathscr{O}]$$
 is the conductor,  
$$\mathscr{O} = \mathbf{Z} + \frac{\Delta_{\ell} + \sqrt{\Delta_{\ell}}}{2} \mathbf{Z}$$

 $\Delta_\ell = \ell^2 \Delta_K$  is the non fundamental discriminant of  $\mathscr{O}_{\Delta_\ell} \coloneqq \mathscr{O}$ 

Can extend the definition of class groups:  $C(\mathscr{O}_{\Delta_{\ell}})$ 

Class Groups of Non Maximal Orders

$$\blacktriangleright \ \Delta_{\ell} := \ell^2 \Delta_{\mathrm{K}}$$

There exists a surjection

$$\bar{\varphi}_{\ell} \ : \ C(\mathscr{O}_{\Delta_{\ell}}) \longrightarrow C(\mathscr{O}_{\Delta_{K}})$$

► If 
$$\Delta_{\mathrm{K}} < 0, \Delta_{\mathrm{K}} \neq -3, -4$$
,  
$$h(\mathcal{O}_{\Delta_{\ell}}) = h(\mathcal{O}_{\Delta_{\mathrm{K}}}) \times \ell \prod_{p \mid \ell} \left(1 - \left(\frac{\Delta_{\mathrm{K}}}{p}\right)\frac{1}{p}\right)$$

# NICE Family

Paulus Takagi 98: crypto with non maximal orders
 ∆<sub>K</sub> = -p, ∆<sub>q</sub> = -pq<sup>2</sup>, p, q primes and p ≡ 3 (mod 4)

$$h(\mathcal{O}_{\Delta_q}) = h(\mathcal{O}_{\Delta_{\mathrm{K}}}) \times \left(q - \left(\frac{\Delta_{\mathrm{K}}}{q}\right)\right)$$

- ▶ Public key:  $\Delta_q$  and  $h \in \ker \bar{\varphi}_q$ , with  $\bar{\varphi}_q : C(\mathscr{O}_{\Delta_q}) \to C(\mathscr{O}_{\Delta_K})$
- Secret key: q
- Cryptanalysis : C., Joux, Laguillaumie, Nguyen (09):
  - Each class of ker φ<sub>q</sub> contains a non reduced ideal (q<sup>2</sup>, kq)
     From h ∈ ker φ<sub>q</sub>, we find this ideal in polynomial time

A Subgroup with an Easy DL

C. Laguillaumie 15

• 
$$\Delta_{\mathrm{K}} = -pq, \Delta_q = -pq^3, p, q \text{ primes and } pq \equiv 3 \pmod{4}$$

$$h(\mathcal{O}_{\Delta_q}) = h(\mathcal{O}_{\Delta_{\mathrm{K}}}) \times q$$

• Moreover if p > 4q, the ideals of norm  $q^2$  are reduced

Generation of a group with an easy DL subgroup

▶ *q* a prime

► 
$$p > 4q, \Delta_{\mathrm{K}} = -pq, \Delta_q = -pq^3$$
, with  $pq \equiv -1 \pmod{4}$  and  
 $(p/q) = -1$   
 $h(\mathscr{O}_{\Delta_q}) = h(\mathscr{O}_{\Delta_{\mathrm{K}}}) \times q$ 

we assume that  $gcd(q, h(\mathcal{O}_{\Delta_{K}})) = 1$ 

• Let  $\widehat{G}$  be the subgroup of squares of  $C(\mathscr{O}_{\Delta_q})$ 

• 
$$g_q = r^q$$
 where r is a random element of  $\widehat{G}$ 

► 
$$f = [(q^2, q)] \in \widehat{G}$$
  
►  $g = g_q f, G = \langle g \rangle, F = \langle f \rangle, G^q = \langle g_q \rangle$ 

 $G \simeq F \times G^q$ 

DL easy in F, G<sup>q</sup> has unknown order s a divisor of  $h(\mathscr{O}_{\Delta_{\mathbf{K}}})$ 

## Outline

Class groups of Maximal Orders of Imaginary Quadratic Fields

Cryptography in Class Groups of Maximal Orders

Class Groups of non Maximal Orders

Linearly Homomorphic Encryption modulo a prime

## Framework

Group with an easy discrete logarithm (DL) subgroup

- ▶ *q* a prime
- $G = \langle g \rangle$  cyclic group of order  $q \cdot s$  such that gcd(q, s) = 1
- $\mathbf{F} = \langle f \rangle$  subgroup of G of order q
- $G^q = \langle g_q \rangle = \{x^q, x \in G\}$  subgroup of G of order *s*,

 $\mathbf{G}\simeq \mathbf{F}\times \mathbf{G}^q$ 

► DL is easy in F:

Given  $u \in F$ , find  $m \in \mathbb{Z}/q\mathbb{Z}$  such that  $u = f^m$ 

## Framework

Group with an easy discrete logarithm (DL) subgroup

- ▶ *q* a prime
- $G = \langle g \rangle$  cyclic group of order  $q \cdot s$  such that gcd(q, s) = 1
- $\mathbf{F} = \langle f \rangle$  subgroup of G of order q
- $G^q = \langle g_q \rangle = \{x^q, x \in G\}$  subgroup of G of order *s*,

 $\mathbf{G}\simeq \mathbf{F}\times \mathbf{G}^{q}$ 

• Hard to distinguish elements of G<sup>q</sup>:

 $\{Z \hookleftarrow G\} \approx_c \{Z \hookleftarrow G^q\}$ 

Hard Subgroup Membership Assumption (HSM)

## Framework

Group with an easy discrete logarithm (DL) subgroup

- ▶ *q* a prime
- $G = \langle g \rangle$  cyclic group of order  $q \cdot s$  such that gcd(q, s) = 1
- $\mathbf{F} = \langle f \rangle$  subgroup of G of order q
- $G^q = \langle g_q \rangle = \{x^q, x \in G\}$  subgroup of G of order *s*,

 $\mathbf{G}\simeq \mathbf{F}\times \mathbf{G}^q$ 

Inspired by Bresson, Catalano, Pointcheval / Camenisch, Shoup (2003) : constructions over Paillier A Generic Linearly Homomorphic Encryption Scheme

$$\blacktriangleright \mathcal{M} = \mathbf{Z}/q\mathbf{Z}$$

• KeyGen:  

$$sk = x \leftrightarrow \mathscr{D}$$
  
 $pk = h \leftarrow g_q^x$ 

• Encrypt:  $r \leftrightarrow \mathscr{D}$   $c = (c_1, c_2) \leftarrow (g_q^r, f^m h^r)$ • Decrypt:  $DL_f(c_2/c_1^x) \rightsquigarrow m$  EvalSum:

$$(c_1c'_1, c_2c'_2) = (g_q^{r+r'}, h^{r+r'}f^{m+m'})$$

EvalScal:

$$(c_1^\alpha,c_2^\alpha)=(g_q^{r\alpha},h^{r\alpha}f^{m\alpha})$$

C., Laguillaumie, Tucker (2018)

$$c = (c_1, c_2) = \left( g_q^r , f^m \frac{h^r}{h} \right), \quad h = g_q^x, \quad x, r \leftrightarrow \mathcal{D}$$

$$c = (c_1, c_2) = \left(\begin{array}{c} g_q^r , f^m \boxed{h^r}\right), \quad h = g_q^x, \quad x, r \leftrightarrow \mathcal{D}$$

$$c = (c_1, c_2) = \left( g_q^r , f^m c_1^x \right), \quad h = g_q^x, \quad x, r \leftrightarrow \mathcal{D}$$

Compute *c* with the secret key

$$c=(c_1,c_2)=\left(g_q^r,f^m \fbox{c_1^x}\right), \quad h=g_q^x, \quad x,r \hookleftarrow \mathcal{D}$$

$$c = (c_1, c_2) = \left( \ Z \ , f^m \ \mathbf{Z}^x \right), \quad h = g_q^x, \quad x \ \leftrightarrow \mathcal{D}, \quad Z \leftrightarrow \mathbf{G}^q$$

Use  $Z \leftarrow G^q$  for  $c_1$ 

$$c = (c_1, c_2) = \left( \mathbb{Z}, f^m \mathbb{Z}^x \right), \quad h = g_q^x, \quad x \leftrightarrow \mathcal{D}, \quad \mathbb{Z} \leftrightarrow \mathbb{G}^q$$

$$c = (c_1, c_2) = \left( \mathbb{Z}, f^m \mathbb{Z}^x \right), \quad h = g_q^x, \quad x \leftrightarrow \mathcal{D}, \quad \mathbb{Z} \leftrightarrow \mathbb{G}$$

Under the HSM assumption, replace by  $Z \leftrightarrow G$ 

$$c = (c_1, c_2) = \left( \mathbb{Z}, f^m \mathbb{Z}^x \right), \quad h = g_q^x, \quad x \leftrightarrow \mathcal{D}, \quad \mathbb{Z} \leftrightarrow \mathbb{G}$$

Smoothness argument:

Solution close to uniform modulo qs and gcd(q, s) = 1:
 (x mod s) fixed by h but (x mod q) remains uniformly distributed

► 
$$Z = f^a Y$$
 for some fixed  $a \in \mathbb{Z}/q\mathbb{Z}, Y \in G^q$ 

$$c_2 = f^m \mathbf{Z}^x = f^{m+ax} \mathbf{Y}^x$$

 $\rightsquigarrow m$  is hidden!

- Used to sign Bitcoin (1) transactions
- Stealing signing key x vimmediate financial loss
- ▶ Public params: (G, +), of prime order q, with generator P
- Secret Key:  $x \leftrightarrow \mathbf{Z}/q\mathbf{Z}$  and Public Key:  $\mathbf{Q} \leftarrow x \cdot \mathbf{P}$

- Used to sign Bitcoin (1) transactions
- Stealing signing key x vimmediate financial loss
- ▶ Public params: (G, +), of prime order q, with generator P
- Secret Key:  $x \leftrightarrow \mathbf{Z}/q\mathbf{Z}$  and Public Key:  $\mathbf{Q} \leftarrow x \cdot \mathbf{P}$

Two-Party ECDSA





- Used to sign Bitcoin (1) transactions
- Stealing signing key x vimmediate financial loss
- ▶ Public params: (G, +), of prime order q, with generator P
- Secret Key:  $x \leftarrow \mathbf{Z}/q\mathbf{Z}$  and Public Key:  $\mathbf{Q} \leftarrow x \cdot \mathbf{P}$

Two-Party ECDSA



- Used to sign Bitcoin (1) transactions
- Stealing signing key x vimmediate financial loss
- ▶ Public params: (G, +), of prime order q, with generator P
- Secret Key:  $x \leftarrow \mathbf{Z}/q\mathbf{Z}$  and Public Key:  $\mathbf{Q} \leftarrow x \cdot \mathbf{P}$

Two-Party ECDSA



- Used to sign Bitcoin (1) transactions
- Stealing signing key x vimmediate financial loss
- ▶ Public params: (G, +), of prime order q, with generator P
- Secret Key:  $x \leftrightarrow \mathbf{Z}/q\mathbf{Z}$  and Public Key:  $\mathbf{Q} \leftarrow x \cdot \mathbf{P}$

Two-Party ECDSA

m to be signed





- Used to sign Bitcoin (1) transactions
- Stealing signing key x vimmediate financial loss
- ▶ Public params: (G, +), of prime order q, with generator P
- Secret Key:  $x \leftrightarrow \mathbf{Z}/q\mathbf{Z}$  and Public Key:  $\mathbf{Q} \leftarrow x \cdot \mathbf{P}$

Two-Party ECDSA

m to be signed



- Used to sign Bitcoin (1) transactions
- Stealing signing key x vimmediate financial loss
- ▶ Public params: (G, +), of prime order q, with generator P
- Secret Key:  $x \leftrightarrow \mathbf{Z}/q\mathbf{Z}$  and Public Key:  $\mathbf{Q} \leftarrow x \cdot \mathbf{P}$

Two-Party ECDSA

m to be signed



 $\sigma$  signature of m

Difficulty and some Previous works

Unfriendly Equation in ECDSA

 $s \leftarrow k^{-1} \cdot (\mathrm{H}(m) + r \cdot x) \mod q$ 

## Lindell (2017)

- Uses Paillier Linearly homomorphic encryption
- Homomorphic mod N an RSA integer (2048 bits)
- ECDSA uses operations mod q (256 bits)
- Drawbacks: Costly range proof, loss in reduction or interactive assumption

# Our Two-Party ECDSA Protocol

- C., Catalano, Laguillaumie, Savasta, Tucker (2019)
- Use a linearly homomorphic encryption scheme mod q ~ Remove the range proof and some technicalities
- Construction à la Cramer-Shoup: can use an argument based on indistinguishability even if the simulation knows the secret key

 $\rightsquigarrow$  Tight security without *interactive* assumptions

Better bandwidth and speed (for high level of security)

# Comparison: Primitives

#### ► Paillier

| Sec. Param. | N (b) | Expo in $\mathbf{Z}/N^2\mathbf{Z}$ (ms) | Ciphertext (b) |
|-------------|-------|-----------------------------------------|----------------|
| 112         | 2048  | 7                                       | 4096           |
| 128         | 3072  | 22                                      | 6144           |
| 192         | 7680  | 214                                     | 15360          |
| 256         | 15360 | 1196                                    | 30720          |

### ► C.-Laguillaumie

| Sec. Param. | $\Delta_{\mathrm{K}}$ (b) | Expo in $C(\mathscr{O}_{\Delta_q})$ (ms) | Ciphertext (b) |
|-------------|---------------------------|------------------------------------------|----------------|
| 112         | 1348                      | 32                                       | 3144           |
| 128         | 1827                      | 55                                       | 4166           |
| 192         | 3598                      | 212                                      | 7964           |
| 256         | 5971                      | 623                                      | 12966          |

Timings with Pari C Library

# Comparison: Two-Party ECDSA

### ► Lindell

| Curve | Sec. | KeyGen (s) | Sign (s) | KeyGen (kb) | Sign (kb) |
|-------|------|------------|----------|-------------|-----------|
| P-256 | 128  | 6.3        | 0.049    | 1 317       | 7.7       |
| P-384 | 192  | 65         | 0.437    | 3 280       | 17.7      |
| P-521 | 256  | 429        | 2.4      | 6 5 4 9     | 33.8      |

C. Catalano, Laguillaumie, Savasta, Tucker

| Curve | Sec. | KeyGen (s) | Sign (s) | KeyGen (kb) | Sign (kb) |
|-------|------|------------|----------|-------------|-----------|
| P-256 | 128  | 9.3        | 0.17     | 227         | 5.7       |
| P-384 | 192  | 35         | 0.64     | 427         | IO.2      |
| P-521 | 256  | 103        | 1.8      | 688         | 16.1      |

Timings with Pari C Library

# Questions?