Linear homomorphic encryption from class groups of quadratic fields

Guilhem Castagnos

Université de Bordeaux
NIST crypto reading club
June 16, 202I

+30 years of Imaginary Quadratic Fields based Crypto

Non exhaustive timeline :

+30 years of Imaginary Quadratic Fields based Crypto

Non exhaustive timeline :

+30 years of Imaginary Quadratic Fields based Crypto

Non exhaustive timeline :

+30 years of Imaginary Quadratic Fields based Crypto

Non exhaustive timeline :

+30 years of Imaginary Quadratic Fields based Crypto

Non exhaustive timeline :

+30 years of Imaginary Quadratic Fields based Crypto

Non exhaustive timeline :

+30 years of Imaginary Quadratic Fields based Crypto

Non exhaustive timeline :

+30 years of Imaginary Quadratic Fields based Crypto

Non exhaustive timeline :

+30 years of Imaginary Quadratic Fields based Crypto

Non exhaustive timeline :

+30 years of Imaginary Quadratic Fields based Crypto

Non exhaustive timeline :

Outline

Class groups of Maximal Orders of Imaginary Quadratic Fields

Cryptography in Class Groups of Maximal Orders

Class Groups of non Maximal Orders

Linearly Homomorphic Encryption modulo a prime

K and $\mathscr{O}_{\Delta_{\mathrm{K}}}$

Imaginary Quadratic Fields

- $\mathrm{K}=\mathbf{Q}\left(\sqrt{\Delta_{\mathrm{K}}}\right), \Delta_{\mathrm{K}}<0$
- Fundamental Discriminant:
- $\Delta_{\mathrm{K}} \equiv 1(\bmod 4)$ square-free
- $\Delta_{\mathrm{K}} \equiv 0(\bmod 4)$ and $\Delta_{\mathrm{K}} / 4 \equiv 2,3(\bmod 4)$ square-free

Ring of integers of K
$-\mathscr{O}_{\Delta_{K}}$: ring of integers of K, the maximal order,

$$
\mathscr{O}_{\Delta_{K}}=\mathbf{Z}+\frac{\Delta_{K}+\sqrt{\Delta_{K}}}{2} \mathbf{Z}
$$

Ideals

Ideals of $\mathscr{O}_{\Delta_{\mathrm{K}}}$

- Fractional Ideals: $\mathfrak{a} \subset \mathrm{K}$ such that $\exists \alpha \in \mathrm{K}^{*}, \alpha \mathfrak{a}$ is an ideal of $\mathscr{O}_{\Delta_{K}}$
- Invertible Fractional Ideals: a such that there exists \mathfrak{b} such that $\mathfrak{a b}=\mathscr{O}_{\Delta_{K}}$
- Principal Fractional Ideals: $\alpha \mathscr{O}_{\Delta_{\mathrm{K}}}$ where $\alpha \in \mathrm{K}^{*}$

Notation

- $\mathrm{I}\left(\mathscr{O}_{\Delta_{K}}\right)$: group of Invertible Fractional Ideals of $\mathscr{O}_{\Delta_{K}}$
- $\mathrm{P}\left(\mathscr{O}_{\Delta_{K}}\right)$: sub-group of Principal Ideals

Class Group

$$
\mathrm{C}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right):=\mathrm{I}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right) / \mathrm{P}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)
$$

its (finite) cardinal is the class number denoted $h\left(\mathscr{O}_{\Delta_{K}}\right)$

- Equivalence relation:

$$
\mathfrak{a} \sim \mathfrak{b} \Longleftrightarrow \exists \alpha \in \mathrm{K}^{*}, \mathfrak{b}=\alpha \mathfrak{a}
$$

- Class Number: On average $h\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right) \approx 0.461559 \sqrt{\left|\Delta_{\mathrm{K}}\right|}$

Representation of the Classes

Representation of (primitive) ideals of $\mathscr{O}_{\Delta_{\mathrm{K}}}$

$$
\mathfrak{a}=a \mathbf{Z}+\frac{-b+\sqrt{\Delta_{\mathrm{K}}}}{2} \mathbf{Z}=:(a, b)
$$

with $a \in \mathbf{N}$ and $b \in \mathbf{Z}$ such that $b^{2}=\Delta_{\mathrm{K}} \bmod 4 a$

Representation of classes of $\mathrm{C}\left(\mathscr{O}_{\Delta_{K}}\right)$

- (a, b) is reduced if $-a<b \leq a \leq c$ and $b \geq 0$ if $a=c$ where c is s.t. $\Delta_{\mathrm{K}}=b^{2}-4 a c ;$ moreover $a<\sqrt{\left|\Delta_{\mathrm{K}}\right| / 3}$
- A unique reduced ideal per class
- Representation of an element of $\mathrm{C}\left(\mathscr{O}_{\Delta_{K}}\right)$: same bit size as $\left|\Delta_{\mathrm{K}}\right|$

Computation in $\mathrm{C}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)$

- Product of ideals followed by reduction
- Efficient algorithms known since Gauss and Lagrange: reduction and composition of Binary Quadratic Forms
- Quadratic complexity or even quasi linear (Schönhage, 9r)
- Inverse is for free: $[(a, b)]^{-1}=[(a,-b)]$

Outline

Class groups of Maximal Orders of Imaginary Quadratic Fields

Cryptography in Class Groups of Maximal Orders

Class Groups of non Maximal Orders

Linearly Homomorphic Encryption modulo a prime

Hard Problems in Imaginary Quadratic Fields

- Computation of $h\left(\mathscr{O}_{\Delta_{K}}\right)$, the structure of $C\left(\mathscr{O}_{\Delta_{K}}\right)$ and DL
- Sub exponential algorithm of Hafner and Mc-Curley (1989)
- Complexity $\mathrm{L}_{\mid \Delta_{\mathrm{K}}}[1 / 2,1+o(1)]$
- Recent record by Beullens, Kleinjung and Vercauteren (May 2019) : structure of $C\left(\mathscr{O}_{\Delta_{K}}\right)$ with a 512 bits $\left|\Delta_{\mathrm{K}}\right|$ (52 core years)
- Bit sizes for factoring N vs computing DL in $\mathrm{C}\left(\mathscr{O}_{\Delta_{K}}\right)$:

Security Parameters	N	Δ_{K}
112	2048	1348
128	3072	1827
192	7680	3598
256	15360	5971

Biasse, Jacobson and Silvester (ıо)

Crypto based on DL in $\mathrm{C}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)$

- Buchmann and Williams (88): Diffie-Hellman key exchange and ElGamal
- DSA and GQ signatures adaptations : Biehl, Buchmann, Hamdy, and Meyer ($\mathrm{OI}^{-} \mathrm{O}_{2}$)
- Düllmann, Hamdy, Möller, Pohst, Schielzeth, Vollmer (90-07): Implementation
- Construct Δ_{K} a fundamental negative discriminant, in order to minimize to 2-Sylow subgroup of $\mathrm{C}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)$; e.g., $\Delta_{k}=-q$, $q \equiv 3(\bmod 4), q$ prime $: h\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)$ is odd
- Choose g a random class of $\mathrm{C}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)$
\rightsquigarrow order of g will be close to $h\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right) \approx \sqrt{\left|\Delta_{\mathrm{K}}\right|}$
- Work in the cyclic group $\mathrm{G}=\langle g\rangle \subset \mathrm{C}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)$
- The order of g is unknown!

Paradox of Unknown Order ;

- DL in a cyclic group $\mathrm{G}=\langle g\rangle \subset \mathrm{C}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)$ of unknown order s
- s is divisible by small primes with non negligible probability!
- But s not smooth for cryptographic sizes: no algorithm similar to the $(p-1)$ method
- Uniform sampling in G possible with an upper bound on $h\left(\mathscr{O}_{\Delta_{K}}\right) \geqslant s$
- Can not decide if an element of $\mathrm{C}\left(\mathscr{O}_{\Delta_{K}}\right)$ is in G

Paradox of Unknown Order

- Cryptographic accumulators (Lipmaa i2), verifiable delay functions (Wesolowski 19), and many others applications without trusted setup
- Example of verifiable delay functions:
- Slow to compute and easy to verify
- Based on computing $g^{2^{t}}$ without knowing the order of g
- RSA based construction: someone knows $\varphi(n)$! Needs some trusted setup.
- With class groups, $h\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)$ is really unknown to anyone!
- Another application: linearly homomorphic encryption modulo a prime.

Outline

Class groups of Maximal Orders of Imaginary Quadratic Fields
 Cryptography in Class Groups of Maximal Orders

Class Groups of non Maximal Orders

Linearly Homomorphic Encryption modulo a prime

Imaginary Quadratic Orders

Definition

- $\mathrm{K}=\mathbf{Q}\left(\sqrt{\Delta_{\mathrm{K}}}\right)$,
- \mathcal{O} is a subring of K containing 1 and \mathscr{O} is a free \mathbf{Z}-module of rank 2

Characterisation

- $\mathscr{O}_{\Delta_{K}}$: ring of integers of K is the maximal order
- $\mathscr{O} \subset \mathscr{O}_{\Delta_{\mathrm{K}}}, \ell:=\left[\mathscr{O}_{\Delta_{\mathrm{K}}}: \mathscr{O}\right]$ is the conductor,

$$
\mathscr{O}=\mathbf{Z}+\frac{\Delta_{\ell}+\sqrt{\Delta_{\ell}}}{2} \mathbf{Z}
$$

$\Delta_{\ell}=\ell^{2} \Delta_{\mathrm{K}}$ is the non fundamental discriminant of $\mathscr{O}_{\Delta_{\ell}}:=\mathcal{O}$
Can extend the definition of class groups: $\mathrm{C}\left(\mathscr{O}_{\Delta_{\ell}}\right)$

Class Groups of Non Maximal Orders

- $\Delta_{\ell}:=\ell^{2} \Delta_{\mathrm{K}}$
- There exists a surjection

$$
\bar{\varphi}_{\ell}: \mathrm{C}\left(\mathscr{O}_{\Delta_{\ell}}\right) \longrightarrow \mathrm{C}\left(\mathscr{O}_{\Delta_{K}}\right)
$$

- If $\Delta_{\mathrm{K}}<0, \Delta_{\mathrm{K}} \neq-3,-4$,

$$
h\left(\mathscr{O}_{\Delta_{\ell}}\right)=h\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right) \times \ell \prod_{p \mid \ell}\left(1-\left(\frac{\Delta_{\mathrm{K}}}{p}\right) \frac{1}{p}\right)
$$

NICE Family

- Paulus Takagi 98: crypto with non maximal orders
- $\Delta_{K}=-p, \Delta_{q}=-p q^{2}, p, q$ primes and $p \equiv 3(\bmod 4)$

$$
h\left(\mathscr{O}_{\Delta_{q}}\right)=h\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right) \times\left(q-\left(\frac{\Delta_{\mathrm{K}}}{q}\right)\right)
$$

- Public key: Δ_{q} and $h \in \operatorname{ker} \bar{\varphi}_{q}$, with $\bar{\varphi}_{q}: \mathrm{C}\left(\mathscr{O}_{\Delta_{q}}\right) \rightarrow \mathrm{C}\left(\mathscr{O}_{\Delta_{\mathrm{K}}}\right)$
- Secret key: q
- Cryptanalysis: C., Joux, Laguillaumie, Nguyen (o9):
- Each class of $\operatorname{ker} \bar{\varphi}_{q}$ contains a non reduced ideal $\left(q^{2}, k q\right)$
- From $h \in \operatorname{ker} \bar{\varphi}_{q}$, we find this ideal in polynomial time

A Subgroup with an Easy DL

- C. Laguillaumie 15
- $\Delta_{\mathrm{K}}=-p q, \Delta_{q}=-p q^{3}, p, q$ primes and $p q \equiv 3(\bmod 4)$

$$
h\left(\mathscr{O}_{\Delta_{q}}\right)=h\left(\mathscr{O}_{\Delta_{K}}\right) \times q
$$

- Let $f=\left[\left(q^{2}, q\right)\right] \in \mathrm{C}\left(\mathscr{O}_{\Delta_{q}}\right)$
- $\mathrm{F}=\langle f\rangle$ is of order q, and

$$
f^{m}=\left[\left(q^{2},-\mathrm{L}(m) q\right)\right]
$$

where $\mathrm{L}(m) \in[-q, q]$ is odd and $\mathrm{L}(m) \equiv m^{-1}(\bmod q)$

- Moreover if $p>4 q$, the ideals of norm q^{2} are reduced

Generation of a group with an easy DL subgroup

- q a prime
- $p>4 q, \Delta_{\mathrm{K}}=-p q, \Delta_{q}=-p q^{3}$, with $p q \equiv-1(\bmod 4)$ and $(p / q)=-1$

$$
h\left(\mathscr{O}_{\Delta_{q}}\right)=h\left(\mathscr{O}_{\Delta_{K}}\right) \times q
$$

we assume that $\operatorname{gcd}\left(q, h\left(\mathscr{O}_{\Delta_{K}}\right)\right)=1$

- Let $\widehat{\mathrm{G}}$ be the subgroup of squares of $\mathrm{C}\left(\mathscr{O}_{\Delta_{q}}\right)$
- $g_{q}=r^{q}$ where r is a random element of $\widehat{\mathrm{G}}$
- $f=\left[\left(q^{2}, q\right)\right] \in \widehat{\mathrm{G}}$
- $g=g_{q} f, \mathrm{G}=\langle g\rangle, \mathrm{F}=\langle f\rangle, \mathrm{G}^{q}=\left\langle g_{q}\right\rangle$

$$
G \simeq F \times G^{q}
$$

DL easy in $\mathrm{F}, \mathrm{G}^{q}$ has unknown order s a divisor of $h\left(\mathscr{O}_{\Delta_{K}}\right)$

Outline

> Class groups of Maximal Orders of Imaginary Quadratic Fields

> Cryptography in Class Groups of Maximal Orders

Class Groups of non Maximal Orders

Linearly Homomorphic Encryption modulo a prime

Framework

Group with an easy discrete logarithm (DL) subgroup

- q a prime
- $G=\langle g\rangle$ cyclic group of order $q \cdot s$ such that $\operatorname{gcd}(q, s)=1$
- $\mathrm{F}=\langle f\rangle$ subgroup of G of order q
- $\mathrm{G}^{q}=\left\langle g_{q}\right\rangle=\left\{x^{q}, x \in G\right\}$ subgroup of G of order s,

$$
G \simeq F \times G^{q}
$$

- DL is easy in F:

Given $u \in \mathrm{~F}$, find $m \in \mathbf{Z} / q \mathbf{Z}$ such that $u=f^{m}$

Framework

Group with an easy discrete logarithm (DL) subgroup

- q a prime
- $G=\langle g\rangle$ cyclic group of order $q \cdot s$ such that $\operatorname{gcd}(q, s)=1$
- $\mathrm{F}=\langle f\rangle$ subgroup of G of order q
- $\mathrm{G}^{q}=\left\langle g_{q}\right\rangle=\left\{x^{q}, x \in G\right\}$ subgroup of G of order s,

$$
\mathrm{G} \simeq \mathrm{~F} \times \mathrm{G}^{q}
$$

- Hard to distinguish elements of G^{q} :

$$
\{\mathrm{Z} \hookleftarrow \mathrm{G}\} \approx_{c}\left\{\mathrm{Z} \hookleftarrow \mathrm{G}^{q}\right\}
$$

Hard Subgroup Membership Assumption (HSM)

Framework

Group with an easy discrete logarithm (DL) subgroup

- q a prime
- $G=\langle g\rangle$ cyclic group of order $q \cdot s$ such that $\operatorname{gcd}(q, s)=1$
- $\mathrm{F}=\langle f\rangle$ subgroup of G of order q
- $\mathrm{G}^{q}=\left\langle g_{q}\right\rangle=\left\{x^{q}, x \in G\right\}$ subgroup of G of order s,

$$
G \simeq F \times G^{q}
$$

- Inspired by Bresson, Catalano, Pointcheval / Camenisch, Shoup (2003) : constructions over Paillier

A Generic Linearly Homomorphic Encryption Scheme

- $\mathscr{I}=\mathbf{Z} / q \mathbf{Z}$
- KeyGen:

$$
\begin{aligned}
& s k=x \hookleftarrow \mathscr{D} \\
& p k=h \leftarrow g_{q}^{x}
\end{aligned}
$$

- Encrypt:

$$
\begin{aligned}
& r \hookleftarrow \mathscr{D} \\
& c=\left(c_{1}, c_{2}\right) \leftarrow\left(g_{q}^{r}, f^{m} h^{r}\right)
\end{aligned}
$$

- Decrypt:

$$
\operatorname{DL}_{f}\left(c_{2} / c_{1}^{x}\right) \rightsquigarrow m
$$

C., Laguillaumie, Tucker (2018)

Indistinguishability à la Cramer Shoup under HSM

$$
c=\left(c_{1}, c_{2}\right)=\left(g_{q}^{r}, f^{m} h^{r}\right), \quad h=g_{q}^{x}, \quad x, r \hookleftarrow \mathscr{D}
$$

Indistinguishability à la Cramer Shoup under HSM

$$
c=\left(c_{1}, c_{2}\right)=\left(g_{q}^{r}, f^{m} h^{r}\right), \quad h=g_{q}^{x}, \quad x, r \hookleftarrow \mathscr{D}
$$

Indistinguishability à la Cramer Shoup under HSM

$$
c=\left(c_{1}, c_{2}\right)=\left(g_{q}^{r}, f^{m} c_{1}^{x}\right), \quad h=g_{q}^{x}, \quad x, r \hookleftarrow \mathscr{D}
$$

Compute c with the secret key

Indistinguishability à la Cramer Shoup under HSM

$$
c=\left(c_{1}, c_{2}\right)=\left(\overleftarrow{g_{q}^{r}}, f^{m} \quad c_{1}^{x}\right), \quad h=g_{q}^{x}, \quad x, r \hookleftarrow \mathscr{D}
$$

Indistinguishability à la Cramer Shoup under HSM

$$
c=\left(c_{1}, c_{2}\right)=\left(\mathrm{Z}, f^{m} \mathrm{Z}^{x}\right), \quad h=g_{q}^{x}, \quad x \hookleftarrow \mathscr{D}, \quad \mathrm{Z} \hookleftarrow \mathrm{G}^{q}
$$

Use $Z \hookleftarrow G^{q}$ for c_{1}

Indistinguishability à la Cramer Shoup under HSM

$$
c=\left(c_{1}, c_{2}\right)=\left(Z, f^{m} Z^{x}\right), \quad h=g_{q}^{x}, \quad x \hookleftarrow \mathscr{D}, \quad Z \hookleftarrow \mathrm{G}^{q}
$$

Indistinguishability à la Cramer Shoup under HSM

$$
c=\left(c_{1}, c_{2}\right)=\left(\mathrm{Z}, f^{m} \mathrm{Z}^{x}\right), \quad h=g_{q}^{x}, \quad x \quad \hookleftarrow \mathscr{D}, \quad \mathrm{Z} \hookleftarrow \mathrm{G}
$$

Under the HSM assumption, replace by $\mathrm{Z} \hookleftarrow \mathrm{G}$

Indistinguishability à la Cramer Shoup under HSM

$$
c=\left(c_{1}, c_{2}\right)=\left(\mathrm{Z}, f^{m} \mathrm{Z}^{x}\right), \quad h=g_{q}^{x}, \quad x \quad \hookleftarrow \mathscr{D}, \quad \mathrm{Z} \hookleftarrow \mathrm{G}
$$

Smoothness argument:

- \mathscr{D} close to uniform modulo $q s$ and $\operatorname{gcd}(q, s)=1$:

$(x \bmod s)$ fixed by h but $(x \bmod q)$ remains uniformly distributed

- $\mathbf{Z}=f^{a} \mathrm{Y}$ for some fixed $a \in \mathbf{Z} / q \mathbf{Z}, \mathrm{Y} \in \mathrm{G}^{q}$

$$
c_{2}=f^{m} \mathbf{Z}^{x}=f^{m+a x} \mathrm{Y}^{x}
$$

$\rightsquigarrow m$ is hidden!

Application: Two-Party ECDSA Signing

ECDSA

- Used to sign Bitcoin (3) transactions
- Stealing signing key $x \leadsto$ immediate financial loss
- Public params: $(\mathrm{G},+)$, of prime order q, with generator P
- Secret Key: $x \leftarrow \mathbf{Z} / q \mathbf{Z}$ and Public Key: $\mathrm{Q} \leftarrow x \cdot \mathrm{P}$

Application: Two-Party ECDSA Signing

ECDSA

- Used to sign Bitcoin (3) transactions
- Stealing signing key $x \leadsto$ immediate financial loss
- Public params: $(\mathbb{G},+)$, of prime order q, with generator P
- Secret Key: $x \hookleftarrow \mathbf{Z} / q \mathbf{Z}$ and Public Key: $\mathrm{Q} \leftarrow x \cdot \mathrm{P}$

Two-Party ECDSA

Application: Two-Party ECDSA Signing

ECDSA

- Used to sign Bitcoin (3) transactions
- Stealing signing key $x \leadsto$ immediate financial loss
- Public params: $(\mathbb{G},+)$, of prime order q, with generator P
- Secret Key: $x \hookleftarrow \mathbf{Z} / q \mathbf{Z}$ and Public Key: $\mathrm{Q} \leftarrow x \cdot \mathrm{P}$

Two-Party ECDSA

Application: Two-Party ECDSA Signing

ECDSA

- Used to sign Bitcoin (3) transactions
- Stealing signing key $x \leadsto$ immediate financial loss
- Public params: $(G,+)$, of prime order q, with generator P
- Secret Key: $x \hookleftarrow \mathbf{Z} / q \mathbf{Z}$ and Public Key: $\mathrm{Q} \leftarrow x \cdot \mathrm{P}$

Two-Party ECDSA

x_{1}, x_{2} : shares of x; Public Key: $\mathrm{Q} \leftarrow x \cdot \mathrm{P}$

Application: Two-Party ECDSA Signing

ECDSA

- Used to sign Bitcoin (3) transactions
- Stealing signing key $x \leadsto$ immediate financial loss
- Public params: $(\mathrm{G},+)$, of prime order q, with generator P
- Secret Key: $x \hookleftarrow \mathbf{Z} / q \mathbf{Z}$ and Public Key: $\mathrm{Q} \leftarrow x \cdot \mathrm{P}$

Two-Party ECDSA
m to be signed

x_{1}, x_{2} : shares of x; Public Key: $\mathrm{Q} \leftarrow x \cdot \mathrm{P}$

Application: Two-Party ECDSA Signing

ECDSA

- Used to sign Bitcoin (3) transactions
- Stealing signing key $x \leadsto$ immediate financial loss
- Public params: $(\mathrm{G},+)$, of prime order q, with generator P
- Secret Key: $x \hookleftarrow \mathbf{Z} / q \mathbf{Z}$ and Public Key: $\mathrm{Q} \leftarrow x \cdot \mathrm{P}$

Two-Party ECDSA
m to be signed

x_{1}, x_{2} : shares of x; Public Key: $\mathrm{Q} \leftarrow x \cdot \mathrm{P}$

Application: Two-Party ECDSA Signing

ECDSA

- Used to sign Bitcoin (3) transactions
- Stealing signing key $x \leadsto$ immediate financial loss
- Public params: $(G,+)$, of prime order q, with generator P
- Secret Key: $x \hookleftarrow \mathbf{Z} / q \mathbf{Z}$ and Public Key: $\mathrm{Q} \leftarrow x \cdot \mathrm{P}$

Two-Party ECDSA
m to be signed

σ signature of m
x_{1}, x_{2} : shares of x; Public Key: $\mathrm{Q} \leftarrow x \cdot \mathrm{P}$

Difficulty and some Previous works

Unfriendly Equation in ECDSA

$$
s \leftarrow k^{-1} \cdot(\mathrm{H}(m)+r \cdot x) \bmod q
$$

Lindell (2017)

- Uses Paillier Linearly homomorphic encryption
- Homomorphic mod N an RSA integer (2048 bits)
- ECDSA uses operations mod q (256 bits)
- Drawbacks: Costly range proof, loss in reduction or interactive assumption

Our Two-Party ECDSA Protocol

- C., Catalano, Laguillaumie, Savasta, Tucker (2019)
- Use a linearly homomorphic encryption scheme $\bmod q$
\rightsquigarrow Remove the range proof and some technicalities
- Construction à la Cramer-Shoup: can use an argument based on indistinguishability even if the simulation knows the secret key
\rightsquigarrow Tight security without interactive assumptions
- Better bandwidth and speed (for high level of security)

Comparison: Primitives

- Paillier

Sec. Param.	$\mathrm{N}(\mathrm{b})$	Expo in $\mathbf{Z} / \mathrm{N}^{2} \mathbf{Z}$ (ms)	Ciphertext (b)
II2	2048	7	4096
128	3072	22	6144
192	7680	214	15360
256	15360	1196	30720

- C.-Laguillaumie

Sec. Param.	$\Delta_{\mathrm{K}}(\mathrm{b})$	Expo in $\mathrm{C}\left(\mathscr{O}_{\Delta_{q}}\right)(\mathrm{ms})$	Ciphertext (b)
II2	I 348	32	3144
I28	I 827	55	4 I 66
192	3598	2 I 2	7964
256	597 I	623	12966

Timings with Pari C Library

Comparison: Two-Party ECDSA

- Lindell

Curve	Sec.	KeyGen (s)	Sign (s)	KeyGen (kb)	Sign (kb)
P-256	I28	6.3	0.049	I 317	7.7
P-384	192	65	0.437	3280	I 7.7
P-521	256	429	2.4	6549	33.8

- C. Catalano, Laguillaumie, Savasta, Tucker

Curve	Sec.	KeyGen (s)	Sign (s)	KeyGen (kb)	Sign (kb)
P-256	I28	9.3	0.17	227	5.7
P-384	192	35	0.64	427	10.2
P-521	256	103	1.8	688	16.1

Timings with Pari C Library

Questions?

