
AUGUST 22, 2019

Measuring TLS
key exchange with
post-quantum
KEM

The Second PQC Standardization Conference

/01
/02
/03
/04
/05

 2

OVERVIEW

REAL WORLD CRYPTOGRAPHY

DESIGNING THE EXPERIMENT

OUR EXPERIMENT

PRELIMINARY RESULTS

QUESTIONS

Cloudflare

@_henrycase

Krzysztof
Kwiatkowski Google

@agl__

Adam Langley
Cloudflare

@grittygrease

Nick Sullivan
University of Maryland

@DistributedDave

Dave Levin
Northeastern University

@amislove

Alan Mislove

 3

INTRODUCTION: TEAM

Cloudflare

@lukevalenta

Luke Valenta

=

Real World Cryptography

SECTION 1

 5

MOTIVATION

How best to contribute to
the PQC standardization
process?

Pick an ecosystem and
explore the upgrade path.

 6

MOTIVATION

The cryptographic system should be widely

deployed and relied on by millions of people

for important communications.

Meaningful deployment and impact

Deployments with many different

dependencies and complex moving parts

are trickier to upgrade. Pick a project that

helps uncover potential stumbling blocks.

Non-trivial complexity

There should be well-established

requirements and norms for upgrading the

ecosystem based on previous upgrades.

Methodology for migration established

 7

MOTIVATION

HTTPS in browsers

The cryptographic system should be widely

deployed and relied on by millions of people

for important communications.

Meaningful deployment and impact

Deployments with many different

dependencies and complex moving parts

are trickier to upgrade. Pick a project that

helps uncover potential stumbling blocks.

Non-trivial complexity

There should be well-established

requirements and norms for upgrading the

ecosystem based on previous upgrades.

Methodology for migration established

MOTIVATION

Online life is encrypted

Web traffic is 75% HTTPS

This includes almost all banking, eCommerce, social

media, search, webmail, video streaming, news, and other

online activity in a browser or mobile app.

Meaningful deployment
and impact

 9

Modern “auto-update” browsers

Older browsers (IE6/7)

Embedded app browsing

HTTPS API clients

SSL libraries

BoringSSL, NSS, CommonCrypto, sChannel…

Browser complexity

Forward Proxies (with SNI-filtering)

Anti-virus proxies

TCP proxies of other types

National Firewalls

Other “hidden” participants

Site abandonment

Slow updates that require downtime

Library dependencies: OpenSSL etc.

TLS terminator boxes/cloud services

Server complexity

Non-trivial complexity

HTTPS is HTTP with TLS/SSL

TLS 1.2 standardized in 2008 as RFC 5246

Not widely deployed in browsers until 2013-14

No feedback loop from real world to standardization process

Methodology for
migration
established

 10

STICKER

Rule of thumb

Breakage rate should be

comfortably below 1%

DEPLOYABLE PROTOCOLS

Publish the specification Use test population Detect various breakages

Measure
2012-132008 2012

Specify Deploy
Fix bad servers and middleboxes

until breakage is low enough

Insecure fallback

Adjust
2012-2014

Rule of thumb

Breakage rate should be

comfortably below 1%

DEPLOYABLE PROTOCOLS

Develop draft specifications Use test population Detect various breakages

Measure
2016-20182014-2018 2016-2018

Specify Deploy
Change the specification to adjust

for the reality of the world

Adjust
2016-2018

Additional standards for

incorporating PQC into applications

Deploy widely Detect various breakages

Measure
How deployable?NIST PQC Process TLS, SSH, etc.

Specify Deploy
Change the specification to adjust

for the reality of the world

Adjust
This experiment!

Designing the experiment

SECTION 2

 15

CPU Usage

Key Size

DESIGNING THE EXPERIMENT

Protocol
Shape Latency

 16DESIGNING THE EXPERIMENT

1-RTT

The client initiates with its key share, the server responds

with its key share, signature and potentially initial data.

Post-quantum KEMs fit nicely into this model.

No client challenge

There is no current requirement for a proof-of-work to be

done on the client side. Expensive key exchange is a DoS

risk.

Protocol Shape

DESIGNING THE EXPERIMENT

Higher latency

If an algorithm takes clock time on the order of network

time (10ms+), it may noticeably delay the connection.

CPU Usage

Power consumption

Mobile and lightweight devices optimize for battery life.

Expensive computations hurt this.

Asymmetry risk

If an attacker can cause a lot of work using only a small

amount of work, it is an amplification attack vector.

Hard-coded sizes in legacy systems

Network congestion causes latency

Unknowns

Key Size

 18

DESIGNING THE EXPERIMENT

Post-quantum confidentiality for TLS

Previous work

2018 experiment by Adam Langley to measure impact of

key size on latency. Implemented “dummy” extension to

simulate larger key sizes.

Control group: no extension sent

Supersingular isogenies (SI): 400 bytes

Structured lattices (SL): 1 100 bytes

Unstructured lattice standing (ULS): 3 300 bytes

DESIGNING THE EXPERIMENT

Results

Configuration Additional latency over control group (ms)

Structured

Lattices

Supersingular

Isogenies

Mobile, Median 9.6 3.5

Mobile, 95th 159 18.4

Desktop, Median 5.5 2.6

Desktop, 95th 137 19.2

Our experiment

SECTION 3

CECPQ2 CECPQ2b

 22

OUR EXPERIMENT

Implement and deploy two realistic key
agreement ciphers

CECPQ2

NTRU-HRSS

• Closest to "ntruhrss701" from Round 1

• NIST level 1

• 1138 byte public key/ciphertext

• C, x86-64 ASM, aarch64 ASM

• Fast KeyGen, Encaps, Decaps

• 4000, 76000, 22000/s on Skylake (<1ms)

• 2057, 33287, 13605/s on ARM Cortex-A75

CECPQ2b

SIKE/p434

• Round 2 submission

• NIST level 1

• 330 byte public key, 346 byte ciphertext

• C, x86-64 ASM, aarch64 ASM

• Slow KeyGen, Encaps, Decaps

• 420, 265, 245/s on Skylake (~5ms)

• 269, 165, 155/s on ARM Cortex-A75

 23

OUR EXPERIMENT

Implement and deploy two realistic key
agreement ciphers

No SHA-3

HKDF-SHA-2 instead of SHA-3 for KEM

Hybrid mode with x25519

Concatenate and combine with HKDF

 24

OUR EXPERIMENT

Some tweaks

Code available
HTTPS://BORINGSSL.GOOGLESOURCE.COM/BORINGSSL/

 25

OUR EXPERIMENT

You could be using post-
quantum cryptography
right now

DEPLOYMENT

Cloudflare edge

Over 20 million Internet properties

Both suites supported

Located “close” to users

Note: SIKE not cleared for Google servers due to DoS risk

Where is it deployed

Chrome Canary

A diverse group of beta testers

Computers, some ARM devices

1/3 control

Typically worse-than-average networking and PQ limited

to x86-64 and Aarch64, i.e. much better-than-average

CPUs.

Preliminary results

SECTION 4

 32

Configuration Additional latency over control group w/ 95% confidence intervals (ms)

CECPQ2 CECPQ2b

Android*, 25th N/A [51, 63]

Android*, Median N/A [47, 62]

Android*, 95th [45, 537] N/A

Windows, 25th N/A N/A

Windows, Median [0.9, 3.1] [16, 20]

Windows, 95th [69, 100] [48, 74]

* only 64-bit devices

SERVER-SIDE RESULTS

 33

CLIENT-SIDE RESULTS

Chrome is measuring TLS handshake latency,

not including TCP connection costs.

The metrics system calculates 95%

confidence intervals for changes and a result

is considered “significant” if no-change isn't

inside that interval.

Configuration Additional latency with 95% confidence

CECPQ2 CECPQ2b

Windows, 25th N/A [53%, 102%]

Windows, Median N/A [20%, 76%]

Windows, 99th N/A N/A

Android, 25th N/A [30%, 96%]

Android, Median N/A N/A

Android, 99th [19%, 278%] N/A

 34

PRELIMINARY CONCLUSIONS

SIKE has very expensive floor

with respect to latency

Likely not to improve due to

Moore’s law and growth of IoT

Key size plays a factor at 95th

percentile, but more data

needed

 35

PRELIMINARY CONCLUSIONS

More measurements to be done

Investigation of configuration of

clients with particularly bad

NTRU performance

Questions?

SECTION 5

AUGUST 22, 2019

Measuring TLS
key exchange with
post-quantum
KEM

The Second PQC Standardization Conference

