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Real World Cryptography

SECTION 1
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MOTIVATION

How best to contribute to 
the PQC standardization 
process? 

Pick an ecosystem and 
explore the upgrade path.
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MOTIVATION

The cryptographic system should be widely 

deployed and relied on by millions of people 

for important communications.

Meaningful deployment and impact

Deployments with many different 

dependencies and complex moving parts 

are trickier to upgrade. Pick a project that 

helps uncover potential stumbling blocks.

Non-trivial complexity

There should be well-established 

requirements and norms for upgrading the 

ecosystem based on previous upgrades.

Methodology for migration established
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MOTIVATION

HTTPS in browsers

The cryptographic system should be widely 

deployed and relied on by millions of people 

for important communications.

Meaningful deployment and impact

Deployments with many different 

dependencies and complex moving parts 

are trickier to upgrade. Pick a project that 

helps uncover potential stumbling blocks.

Non-trivial complexity

There should be well-established 

requirements and norms for upgrading the 

ecosystem based on previous upgrades.

Methodology for migration established



MOTIVATION

Online life is encrypted

Web traffic is 75% HTTPS 

This includes almost all banking, eCommerce, social 

media, search, webmail, video streaming, news, and other 

online activity in a browser or mobile app.

Meaningful deployment 
and impact
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Modern “auto-update” browsers 

Older browsers (IE6/7) 

Embedded app browsing  

HTTPS API clients 

SSL libraries 

BoringSSL, NSS, CommonCrypto, sChannel…

Browser complexity

Forward Proxies (with SNI-filtering) 

Anti-virus proxies 

TCP proxies of other types 

National Firewalls 

Other “hidden” participants

Site abandonment 

Slow updates that require downtime 

Library dependencies: OpenSSL etc. 

TLS terminator boxes/cloud services 

Server complexity

Non-trivial complexity



HTTPS is HTTP with TLS/SSL 

TLS 1.2 standardized in 2008 as RFC 5246 

Not widely deployed in browsers until 2013-14 

No feedback loop from real world to standardization process

Methodology for 
migration 
established
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STICKER

Rule of thumb

Breakage rate should be 

comfortably below 1%

DEPLOYABLE PROTOCOLS

Publish the specification Use test population Detect various breakages

Measure
2012-132008 2012

Specify Deploy
Fix bad servers and middleboxes 

until breakage is low enough 

Insecure fallback

Adjust
2012-2014



Rule of thumb

Breakage rate should be 

comfortably below 1%

DEPLOYABLE PROTOCOLS

Develop draft specifications Use test population Detect various breakages

Measure
2016-20182014-2018 2016-2018

Specify Deploy
Change the specification to adjust 

for the reality of the world

Adjust
2016-2018



Additional standards for 

incorporating PQC into applications

Deploy widely Detect various breakages

Measure
How deployable?NIST PQC Process TLS, SSH, etc.

Specify Deploy
Change the specification to adjust 

for the reality of the world

Adjust
This experiment!



Designing the experiment

SECTION 2
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CPU Usage 

Key Size

DESIGNING THE EXPERIMENT

Protocol 
Shape Latency



 16DESIGNING THE EXPERIMENT

1-RTT

The client initiates with its key share, the server responds 

with its key share, signature and potentially initial data. 

Post-quantum KEMs fit nicely into this model.

No client challenge

There is no current requirement for a proof-of-work to be 

done on the client side. Expensive key exchange is a DoS 

risk.

Protocol Shape



DESIGNING THE EXPERIMENT

Higher latency

If an algorithm takes clock time on the order of network 

time (10ms+), it may noticeably delay the connection.

CPU Usage

Power consumption

Mobile and lightweight devices optimize for battery life. 

Expensive computations hurt this.

Asymmetry risk

If an attacker can cause a lot of work using only a small 

amount of work, it is an amplification attack vector.



Hard-coded sizes in legacy systems 

Network congestion causes latency 

Unknowns

Key Size
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DESIGNING THE EXPERIMENT

Post-quantum confidentiality for TLS 

Previous work 

2018 experiment by Adam Langley to measure impact of 

key size on latency. Implemented “dummy” extension to 

simulate larger key sizes.

Control group: no extension sent 

Supersingular isogenies (SI): 400 bytes 

Structured lattices (SL): 1 100 bytes 

Unstructured lattice standing (ULS): 3 300 bytes 



DESIGNING THE EXPERIMENT

Results 

Configuration Additional latency over control group (ms)

Structured 

Lattices

Supersingular 

Isogenies

Mobile, Median 9.6 3.5

Mobile, 95th 159 18.4

Desktop, Median 5.5 2.6

Desktop, 95th 137 19.2



Our experiment

SECTION 3



CECPQ2 CECPQ2b
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OUR EXPERIMENT

Implement and deploy two realistic key 
agreement ciphers



CECPQ2

NTRU-HRSS 

• Closest to "ntruhrss701" from Round 1 

• NIST level 1 

• 1138 byte public key/ciphertext 

• C, x86-64 ASM, aarch64 ASM 

• Fast KeyGen, Encaps, Decaps 

• 4000, 76000, 22000/s on Skylake (<1ms) 

• 2057, 33287, 13605/s on ARM Cortex-A75 

CECPQ2b

SIKE/p434 

• Round 2 submission 

• NIST level 1 

• 330 byte public key, 346 byte ciphertext 

• C, x86-64 ASM, aarch64 ASM 

• Slow KeyGen, Encaps, Decaps 

• 420, 265, 245/s on Skylake (~5ms) 

• 269, 165, 155/s on  ARM Cortex-A75

 23

OUR EXPERIMENT

Implement and deploy two realistic key 
agreement ciphers



No SHA-3

HKDF-SHA-2 instead of SHA-3 for KEM 

Hybrid mode with x25519

Concatenate and combine with HKDF 
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OUR EXPERIMENT

Some tweaks

Code available  
HTTPS://BORINGSSL.GOOGLESOURCE.COM/BORINGSSL/
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OUR EXPERIMENT

You could be using post-
quantum cryptography 
right now



DEPLOYMENT

Cloudflare edge

Over 20 million Internet properties 

Both suites supported 

Located “close” to users 

Note: SIKE not cleared for Google servers due to DoS risk

Where is it deployed

Chrome Canary

A diverse group of beta testers 

Computers, some ARM devices 

1/3 control 

Typically worse-than-average networking and PQ limited 

to x86-64 and Aarch64, i.e. much better-than-average 

CPUs.





Preliminary results

SECTION 4
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Configuration Additional latency over control group w/ 95% confidence intervals (ms)

CECPQ2 CECPQ2b

Android*, 25th N/A [51, 63]

Android*, Median N/A [47, 62]

Android*, 95th [45, 537] N/A

Windows, 25th N/A N/A

Windows, Median [0.9, 3.1] [16, 20]

Windows, 95th [69, 100] [48, 74]

* only 64-bit devices

SERVER-SIDE RESULTS
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CLIENT-SIDE RESULTS

Chrome is measuring TLS handshake latency, 

not including TCP connection costs. 

The metrics system calculates 95% 

confidence intervals for changes and a result 

is considered “significant” if no-change isn't 

inside that interval.

Configuration Additional latency with 95% confidence

CECPQ2 CECPQ2b

Windows, 25th N/A [53%, 102%]

Windows, Median N/A [20%, 76%]

Windows, 99th N/A N/A

Android, 25th N/A [30%, 96%]

Android, Median N/A N/A

Android, 99th [19%, 278%] N/A
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PRELIMINARY CONCLUSIONS

SIKE has very expensive floor 

with respect to latency 

Likely not to improve due to 

Moore’s law and growth of IoT 

Key size plays a factor at 95th 

percentile, but more data 

needed 
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PRELIMINARY CONCLUSIONS

More measurements to be done 

Investigation of configuration of 

clients with particularly bad 

NTRU performance



Questions?

SECTION 5
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