Optimised Lattice-Based Key
Encapsulation in Hardware

James Howe', Marco Martinolit, Elisabeth Oswald?, and Francesco Regazzoni*
TPQShield, UK; ¥University of Bristol, UK; and *ALaRI Institute, Switzerland

NIST’s Second PQC Standardization Conference
24 August 2019

Presentation Outline "SH'H“

(1) Background
(i) FrodoKEM and updates
\u/ Current state-of-the-art in PQC hardware
(i) Keccak as a seed expander

(11 thimising FrodoKEM's Throughput
) What's different?
\n/ First-order masking
(i) Optimising FrodoKEM in Hardware

Q Results and Conclusions
(i) Comparisons of FrodoKEM Encaps
\u/ Comparisons of FrodoKEM Decaps
(i) Graphical representation of results

@ References

FrodoKEM

FrodoKEM primer:
-» FrodoKEM is a lattice-based KEM.
-» It bases its hardness on the (conservative) LWE problem.
-» Performs well desite using unstructured lattices.

FrodoKEM updates:
> FrodoKEM makes it to round 2!
-> Adds a new parameter set (n = 1344) for NIST level 5 security.
-» Changed PRNG / seed expander from cSHAKE to SHAKE.
-> Slightly changed the error distribution parameter for FrodoKEM-640.

FrodoKEM “"SHIELD

FrodoKEM is still comprised of a number of key modules:
-» Matrix-matrix multiplication, of sizes n = 640, 976, and 1344.
-» Uniform and Gaussian error generation.
-» Random oracles via SHAKE for CCA security.

As well as a number of subsidiary operations:
-» Matrix packing (and unpacking) to vectors.
-» Message encoding and decoding.

-» Parsing vectors and bit-strings.

FrodoKEM “"SHIELD

FrodoKEM is still comprised of a number of key modules:
-» Matrix-matrix multiplication, of sizes n = 640, 976, and 1344.
-» Uniform and Gaussian error generation.
-» Random oracles via SHAKE for CCA security.

As well as a number of subsidiary operations:
-» Matrix packing (and unpacking) to vectors.
-» Message encoding and decoding.

-» Parsing vectors and bit-strings.

How does FrodoKEM compare to other PQC in hardware?

PQC in Hardware to date

-» Code-based designs have large KeyGen / decryption, but fast encryption.
-» Isogeny-based also have large overall designs, but seem to be a lot slower.
-» Lattice-based designs nicely balance area/performance across all operations.

Table 1: PQC on FPGA, results taken from pqczoo. com.

Cryptographic Implementation Device LUT FF Slice DSP BRAM MHz Thr-Put
I SPHINCS-256 (Total) [ACZ18] Kin-7 19,067 3,132 7,306 3 36 525 654
o Niederreiter KeyGen [WSN18] Str-V - - 39,122 827 230 75
8 Niederreiter Encrypt [WSN18] Str-v - 6,977 4,276 0 448 50,000
O Niederreiter Decrypt [WSN18] Str-V - 48,050 20,815 — 88 290 12,500
2 SIKE 3-cores (Total) [KAK18] Vir-7 27,713 38,489 11,277 288 61 205 27
g" SIKE 6-cores (Total) [KAK18] Vir-7 50,084 69,054 19,892 576 55 202 32
< SIKE 3-cores (Total) [RM19] Vir-7 49,099 62,124 18711 294 23 226 32

NewHope KEX Server [KLCt17] Art-7 20,826 9,975 7,153 8 14 131 13,699

NewHope KEX Client [KLC*17] Art-7 18,756 9,412 6,680 8 14 133 12,723
8 NewHope KEX Server [0G17] Art-7 5142 4452 1,708 2 4 125 731
4,53 NewHope KEX Client [0G17] Art-7 4,498 4,635 1,483 2 4 117 653
-

Round5 (All) (SoC) [PQShield] Art-7 7,168 3337 2344 0 - 100 -

FrodoKEM-640 Encaps [HOKG18] Art-7 6,745 3,528 1,855 1 11 167 51

FrodoKEM-640 Decaps [HOKG18] Art-7 7,220 3,549 1,992 1 16 162 49

pqczoo.com

PQC in Hardware to date

-» Code-based designs have large KeyGen / decryption, but fast encryption.
-» Isogeny-based also have large overall designs, but seem to be a lot slower.
-» Lattice-based designs nicely balance area/performance across all operations.

Table 2: PQC on FPGA, results taken from pqczoo. com.

Cryptographic Implementation Device DSP BRAM MHz

I SPHINCS-256 (Total) [ACZ18] Kin-7 3 36 525
o Niederreiter KeyGen [WSN18] Str-V — 827 230
B Niederreiter Encrypt [WSN18] Str-V — 0 448
O Niederreiter Decrypt [WSN18] Str-V - 88 290
Z SIKE 3-cores (Total) [KAK18] Vir-7 288 61 205
§° SIKE 6-cores (Total) [KAK18] Vir-7 576 55 202
2 SIKE 3-cores (Total) [RM19] Vir-7 294 23 226
NewHope KEX Server [KLC*17] Art-7 8 14 131
NewHope KEX Client [KLC*17] Art-7 8 14 133
8 NewHope KEX Server [0G17] Art-7 2 4 125
% NewHope KEX Client [0G17] Art-7 2 4 117
-
Round5 (All) (SoC) [PQShield] Art-7 0 - 100
FrodoKEM-640 Encaps [HOKG18] Art-7 1 11 167
FrodoKEM-640 Decaps [HOKG18] Art-7 1 16 162

pqczoo.com

PQC in Hardware to date

-» Throughput per FPGA slice can tell us how performant designs are for the
hardware resources they consume (1 Slice =~ 4 LUTs + 8 FFs).

-» However, this metric excludes BRAM/DSP usage /4 not ASIC-friendly.

=> Not all use Artix-7 FPGAs, and require a v. expensive Virtex-7 ($50 vs $9Kk).

Table 3: PQC on FPGA, results taken from pgczoo. com.

Cryptographic Implementation Device DSP BRAM MHz
SPHINCS-256 (Total) [ACZ18] Kin-7 3 36 525

T
o Niederreiter KeyGen [WSN18] Str-V - 827 230
B Niederreiter Encrypt [WSN18] Str-V — 0 448
O Niederreiter Decrypt [WSN18] Str-V - 88 290
2z SIKE 3-cores (Total) [KAK18] Vir-7 288 61 205
§° SIKE 6-cores (Total) [KAK18] Vir-7 576 55 202
2 SIKE 3-cores (Total) [RM19] Vir-7 294 23 226
NewHope KEX Server [KLC*17] Art-7 8 14 131
NewHope KEX Client [KLC*17] Art-7 8 14 133
.8 NewHope KEX Server [0G17] Art-7 2 4 125
% NewHope KEX Client [0G17] Art-7 2 4 117
-
Round5 (All) (SoC) [PQShield] Art-7 0 - 100
FrodoKEM-640 Encaps [HOKG18] Art-7 1 11 167
FrodoKEM-640 Decaps [HOKG18] Art-7 1 16 162

pqczoo.com

Keccak as a seed expander “SHIE[II

-» For FrodoKEM [HOKG18], NewHope [OG17], and BLISS [PDG14] hardware
designs, the Keccak mid-range corel is utilised, consuming ~750 slices.

-» However, Keccak is a bottleneck in many of the PQC implementations.
-» Keccak’s high-speed core, increases area consumption by 3-8x [BDP™12].
=» This might make it more expensive than the PQC scheme itself 4 impractical.

-» Recently, software implementations of PQC candidates have used alternatives:

> FrodoKEM-640 is faster by 5x using xoshiro128** [BFM*18]2.
> Round5 is faster by 1.4x using LWC candidate SNEIK(HA) [Saa19].

"https://keccak.team/hardware.html
2This PRNG might not qualify for cryptographically secure randomness.

https://keccak.team/hardware.html

Keccak as a seed expander “SHIE[II

-» For FrodoKEM [HOKG18], NewHope [OG17], and BLISS [PDG14] hardware
designs, the Keccak mid-range corel is utilised, consuming ~750 slices.

-» However, Keccak is a bottleneck in many of the PQC implementations.
-» Keccak’s high-speed core, increases area consumption by 3-8x [BDP™12].
=» This might make it more expensive than the PQC scheme itself 4 impractical.

-» Recently, software implementations of PQC candidates have used alternatives:

> FrodoKEM-640 is faster by 5x using xoshiro128** [BFM*18]2.
> Round5 is faster by 1.4x using LWC candidate SNEIK(HA) [Saa19].

With parallelisation, this should also benefit hardware designs...

"https://keccak.team/hardware.html
2This PRNG might not qualify for cryptographically secure randomness.

https://keccak.team/hardware.html

What's different? "SH'H“

-» The proposed hardware designs follows FrodoKEM’s specifications, expect
changing the use of SHAKE for PRNG / seed expanding.

-» Instead, we propose using the more compact (unrolled) Trivium [DCPO8].
-» Trivium still qualifies for cryptographically secure randomness.

-» Being more compact; we are able to stack more of them together to enable
parallel multiplication of the (time consuming) matrix operations.

What's different? "SH'H“

-» The proposed hardware designs follows FrodoKEM’s specifications, expect
changing the use of SHAKE for PRNG / seed expanding.

-» Instead, we propose using the more compact (unrolled) Trivium [DCPO8].
-» Trivium still qualifies for cryptographically secure randomness.

-» Being more compact; we are able to stack more of them together to enable
parallel multiplication of the (time consuming) matrix operations.

-» Additionally we estimate a first-order masking technique for decapsulation.

Efficient first-order masking "SH'H“

-» The efficiency of Trivium also allows us to efficiently mask decapsulation.
=» A random matrix (R) is used to mask the operation M = C — B’S as:

M; = C—B/(S+R),

M, =C-B'(S—R).
=» Then, M is recovered by calculating (M1 + M;) /2.

> We parallelise these operations, as before, so that runtime is not affected.

> We also ensure no two operations of the same row/column are used in parallel,
in case power traces can be combined to cancel out the masking.

Parallelising matrix multiplication

> We want to optimise are FrodoKEM'’s LWE calculations of the form:
C+—SA+E.

> S’ x Ais the real bottleneck, with at most ~7.5m 16-bit multiplications.
-» Thus, we parallelise the matrix multiplication:

(<]] ° o
O sss |O sss |Ouss O aee
o o o o]

ESRN

DSP1 | DSP2 | DSP3| DSP4

& _/

Figure 1: Parallelising matrix multiplication, for 8’ x A, used within LWE
computations for an example of k = 4 parallel multiplications.

Hardware design overview

=» All designs require k/2 Triviums, outputing 32-bits of randomness per clock.
-» Each 32-bit value is split into 16-bits and given to the DSP for MAC operations.
-» Thus, we make a k-times improvement in the throughput / multiplication.

PRNGs Error Sampling Outputs
G .
e aussian
- Y am—
—L + Small

SHA-3

Tiv2 < H» Mac H=» Y
DSP-1

A DSP-2

8 . DSPk

il
Triv = Encode(p)

2
ARITHMETIC

Figure 2: A high-level overview of the proposed hardware designs for FrodoKEM.

Hardware design overview

=» All designs require k/2 Triviums, outputing 32-bits of randomness per clock.

-» Each 32-bit value is split into 16-bits and given to the DSP for MAC operations.
-» Thus, we make a k-times improvement in the throughput / multiplication.

-» But how does this affect the area consumption of the hardware designs?

PRNGs Error Sampling Outputs
G .
e aussian
- Y am—
—L + Small
SHA-3
Tiv2 < H» Mac H=» Y
DSP-1
A DSP-2
8 . DSPk
il
Triv = Encode(p)
2
ARITHMETIC

Figure 2: A high-level overview of the proposed hardware designs for FrodoKEM.

Table of results (encapsulation)

-» We provide results for Encaps for two parameter sets.
> We reduce area consumption by ~40% for the smallest Encaps design.

-» We also increase the throughput by >16x and are still smaller than the
state-of-the-art [HOKG18] without using BRAM.

Table 4: Artix-7 FPGA resource consumption of the proposed FrodoKEM Encaps hardware designs,
using Trivium and k parallel multipliers. Results with BRAM usage have an asterisk (*).

FrodoKEM Protocol LUT FF | Slices| DSP BRAM MHz | Thr-Put

Encaps-640 1x 4,246 2,131 1 0 190
Encaps-640 4x 4,620 2,552 4 0 183
Encaps-640 8x 5,155 3,356 8 0 177
Encaps-640 16x 5796 4,694 16 0 171
Encaps-640 [HOKG18] 6,745 3,528 1 11 167
Encaps-976 1x 4,650 2,118 1 0 187
Encaps-976 4x 4996 2,611 4 0 180
Encaps-976 8x 5,562 3,349 8 0 175
Encaps-976 16x 6,188 4,678 16 0 168
Encaps-976 [HOKG18] 7,209 3,537 1 16 167

Table of results (decapsulation)

-» We provide results for Decaps for two parameter sets.
-» We reduce area consumption by ~40% for the smallest Decaps design.
> We also increase the throughput by >14x and are still smaller than [HOKG18].

Table 5: Artix-7 FPGA resource consumption of the proposed FrodoKEM Decaps hardware designs,
using Trivium and k parallel multipliers. Results with BRAM usage have an asterisk (*).

FrodoKEM Protocol LUT FF | Slices| DSP BRAM MHz
“Decaps-640 1x 4,466 2152 1 125 162
Decaps-640 1x 10,518 2,299 1 0 1%
“Decaps-640 16x 6881 5081 16 125 149
Decaps-640 16x 14,528 5335 16 0 160
“Decaps-640 [HOKG18] 7,220 3549 |1992 1 16 162
“Decaps-976 1x 4888 2153 119 162
Decaps-976 1x 14217 2295 1 0 188
“Decaps-976 16x 7213 5087 16 19 148
Decaps-976 16x 18,960 5285 16 0 157
“Decaps-976 [HOKG18] 7,773 3,559 1 24 162

Graphical representation of results ’“SHIE[II

FrodoKEM-976-16x
FrodoKEM-976-8x
FrodoKEM-976-4x]
FrodoKEM-976-1x []

FrodoKEM-640-16x ||

]

]

]
0

O KeyGen

B Encaps
FrodoKEM-640-8x £2*Decaps
FrodoKEM-640-4x & Decaps

FrodoKEM-640-1x

| | | |
2,000 4,000 6,000 8,000
Number of FPGA Slices

Figure 3: FPGA slice consumption of FrodoKEM protocols on a Xilinx
Artix-7. Decaps values overlap to show results with (*) and without BRAM.

Graphical representation of performance

1 -]
8 osl i KeyGen-640
5 —— Encaps-640
g 0.6 | | —— Decaps-640
- *Decaps-640
é 04| / | KeyGen-976
W -»- Encaps-976
_g 02l : _« | |+ Decaps-976
= T *Decaps-976

ol g_,:ta_—:-’:‘:’:':ﬂ:f:'i-:—’.’:—»—-““—_y |

1 4 8 16

Number of DSP Multipliers

Figure 4: Comparison of the throughput per slice performance on Xilinx Artix-7 FPGA.

Conclusions P"SH'H.“

-» We propose an alternative hardware design for
FrodoKEM, using an unrolled Trvium as PRNG.

> We universally save ~40% in hardware resources on
the FPGA for the same throughput performance.

-» Moreover, by using the same FPGA area we are able
to increase the throughput, universally, by ~16x.

-» It would be interesting to see how other PQC
schemes would benefit from this change, too.

Conclusions P"SH'H.“

-» We propose an alternative hardware design for
FrodoKEM, using an unrolled Trvium as PRNG.

> We universally save ~40% in hardware resources on
the FPGA for the same throughput performance.

-» Moreover, by using the same FPGA area we are able
to increase the throughput, universally, by ~16x.

-» It would be interesting to see how other PQC
schemes would benefit from this change, too.

-» Thanks for listening! Any question?

References | P"SH'H.“

Dorian Amiet, Andreas Curiger, and Paul Zbinden.

FPGA-based Accelerator for Post-Quantum Signature Scheme SPHINCS-256.

IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 18-39, 2018.
Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche, and Ronny Van Keer.

Keccak implementation overview.
URL: http://keccak. neokeon. org/Keccak-implementation-3.2. pdf, 2012.

(=)

Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and Martijn Stam.

Fly, you fool! faster frodo for the arm cortex-m4.
Cryptology ePrint Archive, Report 2018/1116, 2018.
https://eprint.iacr.org/2018/1116.

Christophe De Canniere and Bart Preneel.

Trivium.

In New Stream Cipher Designs, pages 244-266. Springer, 2008.

James Howe, Tobias Oder, Markus Krausz, and Tim Guneysu.

Standard lattice-based key encapsulation on embedded devices.

IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 372-393, 2018.

Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari Kermani.

A high-performance and scalable hardware architecture for isogeny-based cryptography.

IEEE Transactions on Computers, 67(11):1594-1609, 2018.

Po-Chun Kuo, Wen-Ding Li, Yu-Wei Chen, Yuan-Che Hsu, Bo-Yuan Peng, Chen-Mou Cheng, and Bo-Yin Yang.

High performance post-quantum key exchange on FPGAs.
Cryptology ePrint Archive, Report 2017/690, 2017.
https://eprint.iacr.org/2017/690.

) & & =

https://eprint.iacr.org/2018/1116
https://eprint.iacr.org/2017/690
http://keccak

References Il

Tobias Oder and Tim Giineysu.

Implementing the NewHope-simple key exchange on low-cost FPGAs.
Progress in Cryptology-LATINCRYPT, 2017, 2017.

Thomas Péppelmann, Léo Ducas, and Tim Glineysu.
Enhanced lattice-based signatures on reconfigurable hardware.
In International Workshop on Cryptographic Hardware and Embedded Systems, pages 353-370. Springer, 2014.

Debapriya Basu Roy and Debdeep Mukhopadhyay.

Post Quantum ECC on FPGA Platform.
Cryptology ePrint Archive, Report 2019/568, 2019.
https://eprint.iacr.org/2019/568.

@ Markku-Juhani O. Saarinen.

Exploring nist lwc/pqc synergy with r5sneik: How sneik 1.1 algorithms were designed to support round>5.
Cryptology ePrint Archive, Report 2019/685, 2019.
https://eprint.iacr.org/2019/685.

@ Wen Wang, Jakub Szefer, and Ruben Niederhagen.

FPGA-based Niederreiter cryptosystem using binary Goppa codes.
In International Conference on Post-Quantum Cryptography, pages 77-98. Springer, 2018.

https://eprint.iacr.org/2019/568
https://eprint.iacr.org/2019/685

	Background
	FrodoKEM and updates
	Current state-of-the-art in PQC hardware
	Keccak as a seed expander

	Optimising FrodoKEM's Throughput
	What's different?
	First-order masking
	Optimising FrodoKEM in Hardware

	Results and Conclusions
	Comparisons of FrodoKEM Encaps
	Comparisons of FrodoKEM Decaps
	Graphical representation of results

	References

