
Optimised Lattice‐Based Key
Encapsulation in Hardware

James Howe†, Marco Martinoli‡, Elisabeth Oswald‡, and Francesco Regazzoni∗

†PQShield, UK; ‡University of Bristol, UK; and ∗ALaRI Institute, Switzerland

NIST’s Second PQC Standardization Conference
24 August 2019

Presentation Outline

Background
FrodoKEM and updates
Current state‐of‐the‐art in PQC hardware
Keccak as a seed expander

Optimising FrodoKEM’s Throughput
What’s different?
First‐order masking
Optimising FrodoKEM in Hardware

Results and Conclusions
Comparisons of FrodoKEM Encaps
Comparisons of FrodoKEM Decaps
Graphical representation of results

References

I
i
ii
iii

II
i
ii
iii

III
i
ii
iii

IV

FrodoKEM

FrodoKEM primer:
 FrodoKEM is a lattice‐based KEM.
 It bases its hardness on the (conservative) LWE problem.
 Performs well desite using unstructured lattices.

FrodoKEM updates:
 FrodoKEM makes it to round 2!
 Adds a new parameter set (n = 1344) for NIST level 5 security.
 Changed PRNG / seed expander from cSHAKE to SHAKE.
 Slightly changed the error distribution parameter for FrodoKEM‐640.

How does FrodoKEM compare to other PQC in hardware?

FrodoKEM

FrodoKEM is still comprised of a number of key modules:
 Matrix‐matrix multiplication, of sizes n = 640, 976, and 1344.
 Uniform and Gaussian error generation.
 Random oracles via SHAKE for CCA security.

As well as a number of subsidiary operations:
 Matrix packing (and unpacking) to vectors.
 Message encoding and decoding.
 Parsing vectors and bit‐strings.

FrodoKEM

FrodoKEM is still comprised of a number of key modules:
 Matrix‐matrix multiplication, of sizes n = 640, 976, and 1344.
 Uniform and Gaussian error generation.
 Random oracles via SHAKE for CCA security.

As well as a number of subsidiary operations:
 Matrix packing (and unpacking) to vectors.
 Message encoding and decoding.
 Parsing vectors and bit‐strings.

How does FrodoKEM compare to other PQC in hardware?

PQC in Hardware to date

 Code‐based designs have large KeyGen / decryption, but fast encryption.
 Isogeny‐based also have large overall designs, but seem to be a lot slower.
 Lattice‐based designs nicely balance area/performance across all operations.

Table 1: PQC on FPGA, results taken from pqczoo.com.
Cryptographic Implementation Device LUT FF Slice DSP BRAM MHz Thr‐Put

Is
og
en
y

H
La
tti
ce

Co

de

SPHINCS-256 (Total) [ACZ18] Kin‐7 19,067 3,132 7,306 3 36 525 654

Niederreiter KeyGen [WSN18] Str‐V − − 39,122 − 827 230 75
Niederreiter Encrypt [WSN18] Str‐V − 6,977 4,276 − 0 448 50,000
Niederreiter Decrypt [WSN18] Str‐V − 48,050 20,815 − 88 290 12,500

SIKE 3‐cores (Total) [KAK18] Vir‐7 27,713 38,489 11,277 288 61 205 27
SIKE 6‐cores (Total) [KAK18] Vir‐7 50,084 69,054 19,892 576 55 202 32

SIKE 3‐cores (Total) [RM19] Vir‐7 49,099 62,124 18,711 294 23 226 32

NewHope KEX Server [KLC+17] Art‐7 20,826 9,975 7,153 8 14 131 13,699
NewHope KEX Client [KLC+17] Art‐7 18,756 9,412 6,680 8 14 133 12,723

NewHope KEX Server [OG17] Art‐7 5,142 4,452 1,708 2 4 125 731
NewHope KEX Client [OG17] Art‐7 4,498 4,635 1,483 2 4 117 653

Round5 (All) (SoC) [PQShield] Art‐7 7,168 3,337 2,344 0 − 100 −

FrodoKEM‐640 Encaps [HOKG18] Art‐7 6,745 3,528 1,855 1 11 167 51
FrodoKEM‐640 Decaps [HOKG18] Art‐7 7,220 3,549 1,992 1 16 162 49

pqczoo.com

PQC in Hardware to date

 Code‐based designs have large KeyGen / decryption, but fast encryption.
 Isogeny‐based also have large overall designs, but seem to be a lot slower.
 Lattice‐based designs nicely balance area/performance across all operations.

Table 2: PQC on FPGA, results taken from pqczoo.com.
Cryptographic Implementation Device LUT FF Slice DSP BRAM MHz Thr‐Put

H SPHINCS-256 (Total) [ACZ18] Kin‐7 19,067 3,132 7,306 3 36 525 654

Co
de

Niederreiter KeyGen [WSN18] Str‐V
Niederreiter Encrypt [WSN18] Str‐V
Niederreiter Decrypt [WSN18] Str‐V

− − 39,122 − 827 230
− 0 448
− 88 290

75
50,000
12,500

− 6,977 4,276
− 48,050 20,815

Is
og
en
y SIKE 3‐cores (Total) [KAK18] Vir‐7

SIKE 6‐cores (Total) [KAK18] Vir‐7

SIKE 3‐cores (Total) [RM19] Vir‐7

27,713 38,489 11,277 288 61 205
576 55 202

294 23 226

27
32

32

50,084 69,054 19,892

49,099 62,124 18,711

La
tti
ce

NewHope KEX Server [KLC+17] Art‐7
NewHope KEX Client [KLC+17] Art‐7

NewHope KEX Server [OG17] Art‐7
NewHope KEX Client [OG17] Art‐7

Round5 (All) (SoC) [PQShield] Art‐7

FrodoKEM‐640 Encaps [HOKG18] Art‐7
FrodoKEM‐640 Decaps [HOKG18] Art‐7

20,826 9,975 7,153 8 14 131
8 14 133

2 4 125
2 4 117

0 − 100

1 11 167
1 16 162

13,699
12,723

731
653

−

18,756 9,412 6,680

5,142 4,452 1,708
4,498 4,635 1,483

7,168 3,337 2,344

6,745 3,528 1,855 51
49 7,220 3,549 1,992

pqczoo.com

PQC in Hardware to date

 Throughput per FPGA slice can tell us how performant designs are for the
hardware resources they consume (1 Slice ≈ 4 LUTs + 8 FFs).

 However, this metric excludes BRAM/DSP usage ̸→ not ASIC‐friendly.
 Not all use Artix‐7 FPGAs, and require a v. expensive Virtex‐7 ($50 vs $9k).

Table 3: PQC on FPGA, results taken from pqczoo.com.
Cryptographic Implementation Device LUT FF Slice DSP BRAM MHz Thr‐Put Thr‐Put / Slice

H SPHINCS-256 (Total) [ACZ18] Kin‐7 19,067 3,132 7,306 3 36 525 654 0.088

Co
de

Niederreiter KeyGen [WSN18] Str‐V − − 39,122 − 827 230 75 0.002
Niederreiter Encrypt [WSN18] Str‐V − 6,977 4,276 − 0 448 50,000 11.693
Niederreiter Decrypt [WSN18] Str‐V − 48,050 20,815 − 88 290 12,500 0.601

Is
og
en
y SIKE 3‐cores (Total) [KAK18] Vir‐7 27,713 38,489 11,277 288 61 205 27 0.002

SIKE 6‐cores (Total) [KAK18] Vir‐7 50,084 69,054 19,892 576 55 202 32 0.002

SIKE 3‐cores (Total) [RM19] Vir‐7 49,099 62,124 18,711 294 23 226 32 0.002

La
tti
ce

NewHope KEX Server [KLC+17] Art‐7 20,826 9,975 7,153 8 14 131 13,699 1.915
NewHope KEX Client [KLC+17] Art‐7 18,756 9,412 6,680 8 14 133

NewHope KEX Server [OG17] Art‐7 5,142 4,452 1,708 2 4 125
NewHope KEX Client [OG17] Art‐7 4,498 4,635 1,483 2 4 117

Round5 (All) (SoC) [PQShield] Art‐7 7,168 3,337 2,344 0 − 100

12,723 1.905

731 0.428
653 0.440

− −

FrodoKEM‐640 Encaps [HOKG18] Art‐7 6,745 3,528 1,855 1 11 167 51 0.028
FrodoKEM‐640 Decaps [HOKG18] Art‐7 7,220 3,549 1,992 1 16 162 49 0.025

pqczoo.com

With parallelisation, this should also benefit hardware designs...

Keccak as a seed expander

 For FrodoKEM [HOKG18], NewHope [OG17], and BLISS [PDG14] hardware
designs, the Keccak mid‐range core1 is utilised, consuming ~750 slices.

 However, Keccak is a bottleneck in many of the PQC implementations.
 Keccak’s high‐speed core, increases area consumption by 3‐8x [BDP+12].
 This might make it more expensive than the PQC scheme itself ̸→ impractical.
 Recently, software implementations of PQC candidates have used alternatives:

 FrodoKEM‐640 is faster by 5x using xoshiro128** [BFM+18]2.
 Round5 is faster by 1.4x using LWC candidate SNEIK(HA) [Saa19].

1https://keccak.team/hardware.html
2This PRNG might not qualify for cryptographically secure randomness.

https://keccak.team/hardware.html

Keccak as a seed expander

 For FrodoKEM [HOKG18], NewHope [OG17], and BLISS [PDG14] hardware
designs, the Keccak mid‐range core1 is utilised, consuming ~750 slices.

 However, Keccak is a bottleneck in many of the PQC implementations.
 Keccak’s high‐speed core, increases area consumption by 3‐8x [BDP+12].
 This might make it more expensive than the PQC scheme itself ̸→ impractical.
 Recently, software implementations of PQC candidates have used alternatives:

 FrodoKEM‐640 is faster by 5x using xoshiro128** [BFM+18]2.
 Round5 is faster by 1.4x using LWC candidate SNEIK(HA) [Saa19].

With parallelisation, this should also benefit hardware designs...

1https://keccak.team/hardware.html
2This PRNG might not qualify for cryptographically secure randomness.

https://keccak.team/hardware.html

Additionally we estimate a first‐order masking technique for decapsulation.

What’s different?

 The proposed hardware designs follows FrodoKEM’s specifications, expect
changing the use of SHAKE for PRNG / seed expanding.

 Instead, we propose using the more compact (unrolled) Trivium [DCP08].
 Trivium still qualifies for cryptographically secure randomness.
 Being more compact; we are able to stack more of them together to enable
parallel multiplication of the (time consuming) matrix operations.

What’s different?

 The proposed hardware designs follows FrodoKEM’s specifications, expect
changing the use of SHAKE for PRNG / seed expanding.

 Instead, we propose using the more compact (unrolled) Trivium [DCP08].
 Trivium still qualifies for cryptographically secure randomness.
 Being more compact; we are able to stack more of them together to enable
parallel multiplication of the (time consuming) matrix operations.

 Additionally we estimate a first‐order masking technique for decapsulation.

Efficient first‐order masking

 The efficiency of Trivium also allows us to efficiently mask decapsulation.
 A random matrix (R) is used to mask the operation M = C − B′S as:

M1 = C − B′ (S + R),

M2 = C − B′ (S − R).

 Then, M is recovered by calculating (M1 + M2)/2.
 We parallelise these operations, as before, so that runtime is not affected.
 We also ensure no two operations of the same row/column are used in parallel,
in case power traces can be combined to cancel out the masking.

Parallelising matrix multiplication

 We want to optimise are FrodoKEM’s LWE calculations of the form:

C ← S′A + E′ .

 S′ × A is the real bottleneck, with at most ∼7.5m 16‐bit multiplications.
 Thus, we parallelise the matrix multiplication:

…

DSP1 DSP2 DSP3 DSP4

… … … …

… … … …

Figure 1: Parallelising matrix multiplication, for S′ × A, used within LWE
computations for an example of k = 4 parallel multiplications.

But how does this affect the area consumption of the hardware designs?

Hardware design overview

 All designs require k/2 Triviums, outputing 32‐bits of randomness per clock.
 Each 32‐bit value is split into 16‐bits and given to the DSP for MAC operations.
 Thus, we make a k‐times improvement in the throughput / multiplication.

ARITHMETIC

PRNGs Error Sampling Outputs

DSP1

Triv 1

Triv 2

Triv P

DSP-k

DSP-2

DSP-1

...
Gaussian

Encode(µ)

...

MAC +

ss

+

Small
SHA-3

...

/k
2

c1

c2

Figure 2: A high‐level overview of the proposed hardware designs for FrodoKEM.

Hardware design overview

 All designs require k/2 Triviums, outputing 32‐bits of randomness per clock.
 Each 32‐bit value is split into 16‐bits and given to the DSP for MAC operations.
 Thus, we make a k‐times improvement in the throughput / multiplication.
 But how does this affect the area consumption of the hardware designs?

ARITHMETIC

PRNGs Error Sampling Outputs

DSP1

Triv 1

Triv 2

Triv P

DSP-k

DSP-2

DSP-1

...
Gaussian

Encode(µ)

...

MAC +

ss

+

Small
SHA-3

...

/k
2

c1

c2

Figure 2: A high‐level overview of the proposed hardware designs for FrodoKEM.

Table of results (encapsulation)

 We provide results for Encaps for two parameter sets.
 We reduce area consumption by ∼40% for the smallest Encaps design.
 We also increase the throughput by >16x and are still smaller than the
state‐of‐the‐art [HOKG18] without using BRAM.

Table 4: Artix‐7 FPGA resource consumption of the proposed FrodoKEM Encaps hardware designs,
using Trivium and k parallel multipliers. Results with BRAM usage have an asterisk (*).

Slices Thr‐Put FrodoKEM Protocol LUT FF DSP BRAM MHz

Encaps‐640 1x 4,246 2,131 1,180 1 0 190 58
Encaps‐640 4x 4,620 2,552 1,338 4 0 183 221
Encaps‐640 8x 5,155 3,356 1,485 8 0 177 427
Encaps‐640 16x 5,796 4,694 1,692 16 0 171 825

Encaps‐640 [HOKG18] 6,745 3,528 1,855 1 11 167 51

Encaps‐976 1x 4,650 2,118 1,272 1 0 187 25
Encaps‐976 4x 4,996 2,611 1,455 4 0 180 94
Encaps‐976 8x 5,562 3,349 1,608 8 0 175 183
Encaps‐976 16x 6,188 4,678 1,782 16 0 168 350

Encaps‐976 [HOKG18] 7,209 3,537 1,985 1 16 167 22

*

*

*

*

Table of results (decapsulation)

 We provide results for Decaps for two parameter sets.
 We reduce area consumption by ∼40% for the smallest Decaps design.
 We also increase the throughput by >14x and are still smaller than [HOKG18].

Table 5: Artix‐7 FPGA resource consumption of the proposed FrodoKEM Decaps hardware designs,
using Trivium and k parallel multipliers. Results with BRAM usage have an asterisk (*).

FrodoKEM Protocol LUT FF Slices DSP BRAM MHz Thr‐Put
*Decaps‐640 1x 4,466 2,152
Decaps‐640 1x 10,518 2,299

*Decaps‐640 16x 6,881 5,081
Decaps‐640 16x 14,528 5,335

1,254
2,933

1,947
4,020

1 12.5 162
1 0 190

16 12.5 149
16 0 160

49
57

710
763

*Decaps‐640 [HOKG18] 7,220 3,549 1,992 1 16 162 49

*Decaps‐976 1x 4,888 2,153
Decaps‐976 1x 14,217 2,295

*Decaps‐976 16x 7,213 5,087
Decaps‐976 16x 18,960 5,285

1,390
3,956

2,042
5,274

1 19 162
1 0 188

16 19 148
16 0 157

21
25

306
325

*Decaps‐976 [HOKG18] 7,773 3,559 2,158 1 24 162 21

Graphical representation of results

FrodoKEM‐976‐16x

FrodoKEM‐976‐8x

FrodoKEM‐976‐4x

FrodoKEM‐976‐1x

FrodoKEM‐640‐16x

FrodoKEM‐640‐8x

FrodoKEM‐640‐4x

FrodoKEM‐640‐1x

0 2,000 4,000 6,000 8,000

KeyGen
Encaps
*Decaps
Decaps

Number of FPGA Slices

Figure 3: FPGA slice consumption of FrodoKEM protocols on a Xilinx
Artix‐7. Decaps values overlap to show results with (*) and without BRAM.

Graphical representation of performance

Th
ro
ug
hp
ut

 p
er

 S
lic
e

1

0.8

0.6

0.4

0.2

0

KeyGen‐640
Encaps‐640
Decaps‐640
*Decaps‐640
KeyGen‐976
Encaps‐976
Decaps‐976
*Decaps‐976

1 4 8 16
Number of DSP Multipliers

Figure 4: Comparison of the throughput per slice performance on Xilinx Artix‐7 FPGA.

Thanks for listening! Any question?

Conclusions

 We propose an alternative hardware design for
FrodoKEM, using an unrolled Trvium as PRNG.

 We universally save ∼40% in hardware resources on
the FPGA for the same throughput performance.

 Moreover, by using the same FPGA area we are able
to increase the throughput, universally, by ∼16x.

 It would be interesting to see how other PQC
schemes would benefit from this change, too.

Conclusions

 We propose an alternative hardware design for
FrodoKEM, using an unrolled Trvium as PRNG.

 We universally save ∼40% in hardware resources on
the FPGA for the same throughput performance.

 Moreover, by using the same FPGA area we are able
to increase the throughput, universally, by ∼16x.

 It would be interesting to see how other PQC
schemes would benefit from this change, too.

 Thanks for listening! Any question?

References I

Dorian Amiet, Andreas Curiger, and Paul Zbinden.
FPGA‐based Accelerator for Post‐Quantum Signature Scheme SPHINCS‐256.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 18–39, 2018.

Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche, and Ronny Van Keer.
Keccak implementation overview.
URL: http://keccak. neokeon. org/Keccak‐implementation‐3.2. pdf, 2012.

Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and Martijn Stam.
Fly, you fool! faster frodo for the arm cortex‐m4.
Cryptology ePrint Archive, Report 2018/1116, 2018.
https://eprint.iacr.org/2018/1116.

Christophe De Canniere and Bart Preneel.
Trivium.
In New Stream Cipher Designs, pages 244–266. Springer, 2008.

James Howe, Tobias Oder, Markus Krausz, and Tim Güneysu.
Standard lattice‐based key encapsulation on embedded devices.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 372–393, 2018.

Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari Kermani.
A high‐performance and scalable hardware architecture for isogeny‐based cryptography.
IEEE Transactions on Computers, 67(11):1594–1609, 2018.

Po‐Chun Kuo, Wen‐Ding Li, Yu‐Wei Chen, Yuan‐Che Hsu, Bo‐Yuan Peng, Chen‐Mou Cheng, and Bo‐Yin Yang.
High performance post‐quantum key exchange on FPGAs.
Cryptology ePrint Archive, Report 2017/690, 2017.
https://eprint.iacr.org/2017/690.

https://eprint.iacr.org/2018/1116
https://eprint.iacr.org/2017/690
http://keccak

References II

Tobias Oder and Tim Güneysu.
Implementing the NewHope‐simple key exchange on low‐cost FPGAs.
Progress in Cryptology–LATINCRYPT, 2017, 2017.

Thomas Pöppelmann, Léo Ducas, and Tim Güneysu.
Enhanced lattice‐based signatures on reconfigurable hardware.
In International Workshop on Cryptographic Hardware and Embedded Systems, pages 353–370. Springer, 2014.

Debapriya Basu Roy and Debdeep Mukhopadhyay.
Post Quantum ECC on FPGA Platform.
Cryptology ePrint Archive, Report 2019/568, 2019.
https://eprint.iacr.org/2019/568.

Markku‐Juhani O. Saarinen.
Exploring nist lwc/pqc synergy with r5sneik: How sneik 1.1 algorithms were designed to support round5.
Cryptology ePrint Archive, Report 2019/685, 2019.
https://eprint.iacr.org/2019/685.

Wen Wang, Jakub Szefer, and Ruben Niederhagen.
FPGA‐based Niederreiter cryptosystem using binary Goppa codes.
In International Conference on Post‐Quantum Cryptography, pages 77–98. Springer, 2018.

https://eprint.iacr.org/2019/568
https://eprint.iacr.org/2019/685

	Background
	FrodoKEM and updates
	Current state-of-the-art in PQC hardware
	Keccak as a seed expander

	Optimising FrodoKEM's Throughput
	What's different?
	First-order masking
	Optimising FrodoKEM in Hardware

	Results and Conclusions
	Comparisons of FrodoKEM Encaps
	Comparisons of FrodoKEM Decaps
	Graphical representation of results

	References

