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Exemplary API compliant implementations
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API Design LUT FF

CAESAR
Ascon128 [1] 1595 818

SpoC-64 [2] 2136 876

LWC

Ascon128 [2] 1802 539

SpoC-64 [2] 1565 728

Gimli [3] 946 235
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Exemplary API compliant implementations
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• What do absolute numbers tell us?

• Common API fair comparison?

• What about different API implementations?

API Design LUT FF

CAESAR
Ascon128 [1] 1595 818

SpoC-64 [2] 2136 876

LWC

Ascon128 [2] 1802 539

SpoC-64 [2] 1565 728

Gimli [3] 946 235
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Why?

• "FPGA Benchmarking of Round 2 Candidates..." by GMU [4]

• 24 submissions:

 13 using unmodified dev. Package

 8 using modified dev. Package

 3 not using dev. Package

 What does that mean for comparison?
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API compliant Development Packages

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography 7



API compliant Development Packages
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• LWC exclusive features:

1. Hash support

2. Extended width conversion

3. Multi-Segment messages
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API compliant Development Packages
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• LWC exclusive features:

1. Hash support

2. Extended width conversion

3. Multi-Segment messages

 Benchmark: common interface

 Pre-/PostProcessor, FIFO included!



Resource Comparison of CAESAR and LWC

• LWC outperforms CAESAR
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E.g. 32-bit designs with default configurations
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Resource Comparison of CAESAR and LWC

• LWC outperforms CAESAR

• Exception: 8-bit design with minimized FIFO

• Feature cost constant (e.g. hash, multi-segment)
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E.g. 32-bit designs with default configurations
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CAESAR FIFO configuration

• Optional tag buffering

• E.g. 32-bit implementation, 128-bit tag  8 entries sufficient
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CAESAR FIFO configuration

• Optional tag buffering

• E.g. 32-bit implementation, 128-bit tag  8 entries sufficient

• Default: 1024 entries
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Exemplary API compliant implementations
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1 HeaderFifo: 4 x 24-bit

2 HeaderFifo: 512 x 32-bit

API Design LUT FF

CAESAR
Ascon128 [1] 1 1595 818

SpoC-64 [2] 2 2136 876

LWC

Ascon128 [2] 1802 539

SpoC-64 [2] 1565 728

Gimli [3] 946 235
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CAESAR Ascon128 [1] / LWC Ascon128 [2]
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262

1540

LWC
API

CryptoCore

• CryptoCore by different designers

 Ideally: multiple designs per cipher
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CAESAR SpoC-64 [2] / LWC SpoC-64 [2]
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• FIFO: 512 vs. 4 entries

 FIFO dominates
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204

1361
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API

CryptoCore

• FIFO: 512 vs. 4 entries

 FIFO dominates

 Removing FIFO? Critical Path!
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CAESAR Ascon128 [1] / CAESAR SpoC-64 [2]
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788
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• CipherCore difference not that huge

 FIFO difference (API package)
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LWC Ascon128 [2] / LWC Gimli [3]
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• Equal assumptions for API implementation
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LWC Ascon128 [2] / LWC Gimli [3]
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262

684
Gimli

API

CryptoCore

• Equal assumptions for API implementation

 Improved API implementation + config

 Fair comparison possible
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Conclusion

• Absolute numbers can lead to false impressions

 Improvement of LWC over CAESAR package
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Conclusion

• Absolute numbers can lead to false impressions

 Improvement of LWC over CAESAR package

• Compare ciphers only

 Benchmark int. interface, i.e. CryptoCore?
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Conclusion

• Absolute numbers can lead to false impressions

 Improvement of LWC over CAESAR package

• Compare ciphers only

 Benchmark int. interface, i.e. CryptoCore?

• Ciphers require API

 Include API implementation?

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography 23



Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

Thank you for your attention!
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