
A Detailed Report on the Overhead of Hardware APIs for

Lightweight Cryptography

Patrick Karl and Michael Tempelmeier

Technical University of Munich

Department of Electrical and Computer Engineering

Chair of Security in Information Technology

October 16, 2020

Exemplary API compliant implementations

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

API Design LUT FF

CAESAR
Ascon128 [1] 1595 818

SpoC-64 [2] 2136 876

LWC

Ascon128 [2] 1802 539

SpoC-64 [2] 1565 728

Gimli [3] 946 235

2

Exemplary API compliant implementations

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

• What do absolute numbers tell us?API Design LUT FF

CAESAR
Ascon128 [1] 1595 818

SpoC-64 [2] 2136 876

LWC

Ascon128 [2] 1802 539

SpoC-64 [2] 1565 728

Gimli [3] 946 235

3

Exemplary API compliant implementations

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

• What do absolute numbers tell us?

• Common API fair comparison?

API Design LUT FF

CAESAR
Ascon128 [1] 1595 818

SpoC-64 [2] 2136 876

LWC

Ascon128 [2] 1802 539

SpoC-64 [2] 1565 728

Gimli [3] 946 235

4

Exemplary API compliant implementations

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

• What do absolute numbers tell us?

• Common API fair comparison?

• What about different API implementations?

API Design LUT FF

CAESAR
Ascon128 [1] 1595 818

SpoC-64 [2] 2136 876

LWC

Ascon128 [2] 1802 539

SpoC-64 [2] 1565 728

Gimli [3] 946 235

5

Why?

• "FPGA Benchmarking of Round 2 Candidates..." by GMU [4]

• 24 submissions:

 13 using unmodified dev. Package

 8 using modified dev. Package

 3 not using dev. Package

 What does that mean for comparison?

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography 6

API compliant Development Packages

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography 7

API compliant Development Packages

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

• LWC exclusive features:

1. Hash support

2. Extended width conversion

3. Multi-Segment messages

8

API compliant Development Packages

9Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

• LWC exclusive features:

1. Hash support

2. Extended width conversion

3. Multi-Segment messages

 Benchmark: common interface

 Pre-/PostProcessor, FIFO included!

Resource Comparison of CAESAR and LWC

• LWC outperforms CAESAR

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography 10

E.g. 32-bit designs with default configurations

0

500

1000

1500

2000

2500

LUT FF LUTRAM

CAESAR LWC

Resource Comparison of CAESAR and LWC

• LWC outperforms CAESAR

• Exception: 8-bit design with minimized FIFO

• Feature cost constant (e.g. hash, multi-segment)

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography 11

E.g. 32-bit designs with default configurations

0

500

1000

1500

2000

2500

LUT FF LUTRAM

CAESAR LWC

CAESAR FIFO configuration

• Optional tag buffering

• E.g. 32-bit implementation, 128-bit tag  8 entries sufficient

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography 12

CAESAR FIFO configuration

• Optional tag buffering

• E.g. 32-bit implementation, 128-bit tag  8 entries sufficient

• Default: 1024 entries

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography 13

Exemplary API compliant implementations

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

1 HeaderFifo: 4 x 24-bit

2 HeaderFifo: 512 x 32-bit

API Design LUT FF

CAESAR
Ascon128 [1] 1 1595 818

SpoC-64 [2] 2 2136 876

LWC

Ascon128 [2] 1802 539

SpoC-64 [2] 1565 728

Gimli [3] 946 235

14

CAESAR Ascon128 [1] / LWC Ascon128 [2]

345

1250

CAESAR
API

CipherCore

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

262

1540

LWC
API

CryptoCore

• CryptoCore by different designers

 Ideally: multiple designs per cipher

15

CAESAR SpoC-64 [2] / LWC SpoC-64 [2]

788

1348
CAESAR

API

CipherCore

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

204

1361

LWC
API

CryptoCore

• FIFO: 512 vs. 4 entries

 FIFO dominates

16

CAESAR SpoC-64 [2] / LWC SpoC-64 [2]

788

1348
CAESAR

API

CipherCore

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

204

1361

LWC
API

CryptoCore

• FIFO: 512 vs. 4 entries

 FIFO dominates

 Removing FIFO? Critical Path!

17

CAESAR Ascon128 [1] / CAESAR SpoC-64 [2]

345

1250

Ascon128
API

CipherCore

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

788

1348
SpoC-64

API

CipherCore

• CipherCore difference not that huge

 FIFO difference (API package)

18

LWC Ascon128 [2] / LWC Gimli [3]

262

1540

Ascon128
API

CryptoCore

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

262

684
Gimli

API

CryptoCore

• Equal assumptions for API implementation

19

LWC Ascon128 [2] / LWC Gimli [3]

262

1540

Ascon128
API

CryptoCore

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

262

684
Gimli

API

CryptoCore

• Equal assumptions for API implementation

 Improved API implementation + config

 Fair comparison possible

20

Conclusion

• Absolute numbers can lead to false impressions

 Improvement of LWC over CAESAR package

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography 21

Conclusion

• Absolute numbers can lead to false impressions

 Improvement of LWC over CAESAR package

• Compare ciphers only

 Benchmark int. interface, i.e. CryptoCore?

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography 22

Conclusion

• Absolute numbers can lead to false impressions

 Improvement of LWC over CAESAR package

• Compare ciphers only

 Benchmark int. interface, i.e. CryptoCore?

• Ciphers require API

 Include API implementation?

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography 23

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

Thank you for your attention!

24

References

Patrick Karl (TUM) | A Detailed Report on the Overhead of Hardware APIs for Lightweight Cryptography

[1] Accessed:15.1.2020. Institute of Applied Information Processing and Communications (IAIK), Graz University of Technology.

URL: https://github.com/IAIK/ascon_hardware/tree/master/caesar_hardware_api_v_1_0_3/ASCON_ASCON

[2] Accessed: 13.1.2020. Signatures Analysis Laboratory, Virginia Tech.

URL: https://github.com/vtsal?tab=repositories

[3] Accessed: 13.1.2020. Chair of Security in Information Technology, Technical University of Munich.

URL: https://gitlab.lrz.de/tueisec/crypto-implementations/tree/master/LWC/GIMLI

[4] K. Mohajerani et al. FPGA Benchmarking of Round 2 Candidates in the NIST Lightweight Cryptography Standardization

Process: Methodology, Metrics, Tools, and Results. Cryptology ePrint Archive, Report 2020/1207.

https://eprint.iacr.org/2020/1207, 2020.

25

