
Multiplicative Complexity of Boolean Functions
Meltem Sönmez Turan & René Peralta

National Institute of Standards and Technology

Objective

I Given a target Boolean function f, find an implementation of f over the
basis (AND, OR and NOT) that requires a minimum number of AND gates.

Introduction

I An n-variable Boolean function is a mapping from {0, 1}n to {0, 1}.
I Multiplicative Complexity is the minimum number of multiplications

(AND gates) that are necessary and sufficient to evaluate the function over
the basis (AND, XOR, NOT).

Why do we count the number of AND gates?

I Lightweight cryptography: Efficient implementations are needed for
resource-constrained devices (e.g., RFIG tags). The technique of minimizing
the number of AND gates, and then optimizing the linear components leads
to implementations with low gate complexity.

I Secure multi-party computation: Reducing the number of AND gates
improves the efficiency of secure multi-party protocols (e.g. conducting
online auctions in a way that the winning bid can be determined without
opening the losing bids).

I Side channel attacks: Minimizing the number of AND gates is important
to prevent side channel attacks such as differential power analysis.

I Cryptanalysis of cryptographic primitives: Primitives with low
multiplicative complexity can be broken with algebraic attacks.

Example (Threshold function)

T5
3(x1, x2, x3, x4, x5) =

{
1, if majority of {x1, x2, x3, x4, x5} is 1,

0, otherwise.

Its Algebraic Normal Form (ANF) is

T5
3 = x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5 + x1x4x5 + x2x3x4

+x2x3x5 + x2x4x5 + x3x4x5 + x1x2x3x4 + x1x2x3x5 + x1x2x4x5

+x1x3x4x5 + x2x3x4x5

(where arithmetic is modulo 2). The equation contains 35 multiplications.
Surprisingly, only 3 multiplications are enough to compute it!.

Affine Equivalence

I An affine transformation from g to f in Bn is a mapping of the form
f(x) = g(Ax + a) + b · x + c, where A is a non-singular n× n matrix
over F2; x, a are column vectors over F2; b is a row vector over F2; and
c ∈ F2.

I f, g are affine equivalent, if there exist affine transformations between them.
I Multiplicative complexity is affine invariant on Boolean functions,

i.e., applying affine transformations does not change multiplicative
complexity.

Method

Precomputation

1. Find a “simple” (e.g., one with a small number of monomials in its ANF)
representative for each equivalence class in Bn.

2. For each representative, find an optimal implementation with respect to the
number of AND gates.

Online Phase

1. Find the equivalence class Cf of f.

2. Find the affine transformation from f∗, the representative of Cf, to f.

3. Apply the affine transformation to the optimal implementation of f∗. This
yields an optimal implementation for f.

Results on 4-variable Boolean Functions

There are 65 536 four-variable Boolean functions, but only 8
equivalence classes.

Class Representatives
1 x1

2 x1x2

3 x1x2 + x3x4

4 x1x2x3

5 x1x2x3 + x1x4

6 x1x2x3x4

7 x1x2x3x4 + x1x2

8 x1x2x3x4 + x1x2 + x3x4

Figure 1: Circuits for all nonlinear representatives. No circuit uses more than 3 AND gates.

Four-variable Boolean functions can be implemented using
at most 3 AND gates.

Example

Target function: g = x1x2x3x4 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 +
x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 + x1 + x2 + x3 + x4 + 1
f = x1x2x3x4 and g are affine equivalent under the following
transformation.

x1→ (x1 + 1) x2→ (x2 + 1)

x3→ (x3 + 1) x4→ (x4 + 1)

g can be implemented as (x1 + 1)(x2 + 1)(x3 + 1)(x4 + 1) using only 3
AND gates.

Results on 5-variable Boolean Functions

There are 4 294 967 296 five-variable Boolean functions, but only 48
equivalence classes.

Five-variable Boolean functions can be implemented using
at most 4 AND gates.

Conclusion and Future Work

I We provided efficient implementations of four and five-variable Boolean
functions, in term of multiplicative complexity.

I We plan to extend the work to six-variable Boolean functions. The
approach becomes impractical as the number of variables increases:
. The number of equivalence classes increases exponentially with the

number of variables.
. Constructing optimal implementations for the representatives gets harder.
. Finding an affine transformation from the representative to the target

function gets harder.

Contact Information

I Web: http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
I Email: meltem.turan@nist.gov & peralta@nist.gov

http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
mailto:meltem.turan@nist.gov

