Power Based Side-Channel Attack Analysis on PQC Algorithms

Tendayi Kamucheka, Michael Fahr, Tristen Teague, Alexander Nelson, David Andrews, Miaoqing Huang

Acknowledgement: NIST – Award 60NANB20D016
About Us

• Computer Systems Design Lab & AESIR Lab at University of Arkansas – Computer Science & Computer Engineering Department

• Background – Hardware design, Embedded Systems, High Performance Computing, FPGAs, GPGPU

(Top) Tendayi Kamucheka, Michael Fahr, Tristen Teague
(Bottom) Alexander Nelson, David Andrews, Miaoqing Huang
Research Motivation

• Round 3 places significant interest on:
 • perfect forward secrecy,
 • side-channel and multi-key attacks,
 • and resistance to misuse.

• What can a well-equipped bad actor do with different types of equipment?

ARE WE SAFE FROM SIDE CHANNEL ATTACKS?

Images:
Our Approach: Implementation

• We setup a multi-platform testing lab for power analysis on round 3 PQC algorithms

• Equipment:
 • Tektronix MDO 3 Series oscilloscope
 • ChipWhisperer-Lite

• Current target platforms:
 • Xilinx Artix-7 FPGA
 • Xilinx Virtex-7 FPGA
 • Cortex M4 microcontroller

• Current implementations:
 • Hardware version of Kyber512 (Virtex-7 FPGA)
 • Software version of masked Kyber (Cortex-M4)
 • Using PQM4 library for other testing on Cortex-M4

Images:
(bottom) ChipWhisperer-Lite (black) + UFO target board (red), Cortex-M4 (blue) board mounted on UFO target board.
Our Approach: Methodology

• Non-specific TVLA is used to validate our set up and identify potential leakage

• Experiment setup:
 • Control experiments – fixed vs. fixed inputs
 • Other experiments – fixed vs. random inputs
 • 2000 power traces per dataset

• FPGA board is modified to add probe points to measure current

• On microcontroller, traces are collected from current measured across a shunt resistor
Test Vector Leakage Assessment (TVLA)

• Welch’s t-test, is statistical test that highlights differences between two datasets
 • Outcome is pass or fail for each trace point
 • A measure of 4.5 standard deviations is set as leakage threshold
 • 99.9999% confidence that anything above the threshold is due to leakage

\[t = \frac{X_A - X_B}{\sqrt{\frac{S_A^2}{N_A} + \frac{S_B^2}{N_B}}} \]

Where:
- \(X_A\) = sample mean for each point across time
- \(S_A\) = standard deviation
- \(N_A\) = cardinality

A TEST FOR SENSITIVE DATA-RELATED LEAKAGE
Results:

- Result of measuring voltage drop across shunt resistor
- Oscilloscope captures 1 million data points
- ChipWhisperer-Lite captures 5 thousand data points for same test

Oscilloscope captures at higher resolution
Results:

- Results of TVLA for current (I) measured on FPGA VCCBRAM and VCCAUX_IO.
- Trace reveals two distinct leakage points.

LEAKAGE TEST FAILS AT SAME POINTS IN BOTH TESTS
Conclusions

• We set up a multi-platform testing lab for power analysis side channel analysis
• We evaluate our setup with non-specific Test Vector Leakage Assessment
• Experiments show some leakage – Further analysis is required.
• Future work:
 • Further analysis of observed leakage
 • Exploiting leakage to develop side-channel assisted attacks
Questions?

• Contact info:
 • Tendayi Kamucheka – tfkamuch@uark.edu
 • Michael Fahr – mjfahr@uark.edu
 • Tristen Teague – tdteague@uark.edu

• Computer Systems Design Lab (Lab P.I.s)
 • Miaoqing Huang – mqhuang@uark.edu
 • David Andrews – dandrews@uark.edu

• AESIR Lab (Lab P.I.)
 • Alexander Nelson – ahnelson@uark.edu

Thank You