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§ Round 1: Focus on Intel/AVX2 implementations

§ But: Majority of cryptographic devices is way smaller

‚ Limited RAM

‚ No/limited vector instructions

‚ Side-channels?

§ Challenges

‚ Do schemes even fit in limited RAM + flash?

‚ Are schemes efficient on small ARMs?

‚ What is the overhead of masking?

Motivation 

§ “Performance will play a larger role in the second round” 
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– everyone, always

§ STM32F4DISCOVERY

‚ ARM Cortex-M4

‚ 32-bit, ARMv7E-M

‚ 192KiB RAM, 168MHz

§ PQM4: test and optimize

on the Cortex-M4

‚ github.com/mupq/pqm4

Post-quantum on small devices 

“It’s big and it’s slow” 
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§ They are huge in terms of RAM and flash

‚ Great for PQC – many schemes fit

‚ Unfortunately, pqRSA did not terminate within round 1

§ ARMv7E-M more interesting for assembly optimizations

§ NIST recommended Cortex-M4 for PQC evaluation

§ We’re using it for teaching

‚ We have dozens of them lying around

‚ Our students know how to work with them

Rationale for using STM32F4DISCOVERY boards 

§ They are cheap (ă $30) 
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pqm4

§ Goals

‚ Framework that eases optimization for this platform

‚ Automate testing and benchmarking

‚ Include as many schemes as possible

§ 4 types of implementations

‚ ref: Reference C implementations from submission

packages

‚ clean: Slightly modified reference implementations to

satisfy basic code quality requirements 1

‚ opt: Optimized portable C implementations

‚ m4: Optimized using ARMv7E-M assembly

1see https://github.com/PQClean/PQClean
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Schemes included in pqm4– KEMs 

reference optimized 
BIKE 7Lib — 
Classic McEliece 7Key — 
CRYSTALS-Kyber 
Frodo-KEM 

3 
3 

3 
3 

[BKS19] 
[BFM ` 18] 

HQC 7Lib — 
LAC 3 — 
LEDAcrypt 7RAM WIP 
NewHope 3 3 [AJS16] 
NTRU 3 3 [KRS19] 
NTRU Prime 3 — 
NTS-KEM 7Key — 
ROLLO 7Lib — 
Round5 3 3 Round5 team 
RQC 7Lib — 
SABER 3 3 [KRS19] 
SIKE 3 — 
ThreeBears 3 3 ThreeBears team 

7Key : keys too large 7RAM : implementation uses too much RAM 

7Lib: available implementations depend on external libraries 6 



Schemes included in pqm4– Signatures 

reference optimized 

CRYSTALS-Dilithium 3 3 [GKOS18, RSGCB19] 

FALCON 7RAM 3 Falcon team 

GeMSS 7Key — 

LUOV 3 — 

MQDSS 7RAM — 

Picnic 7RAM — 

qTESLA 3 — 

Rainbow 7Key — 

SPHINCS+ 3 — 

7Key : keys too large 7RAM : implementation uses too much RAM 

7Lib: available implementations depend on external libraries 
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Benchmarking: Cycle Counts and RNG

§ Cycle counts

‚ We don’t want to benchmark the memory controller

§ Downclock core to 24MHz Ñ no wait states

§ Allows to have comprehensible cycle count

§ randombytes

‚ We use the hardware RNG of our platform

‚ Most schemes only sample seed, so speed doesn’t matter
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‚ We don’t want to benchmark those

§ Our approach: Replace those with a single fast

implementation to allow fair comparison

§ SHA-3: ARMv7-M assembly implementation from XKCP 1

§ SHA-2: Fast C implementation from SUPERCOP 2

§ AES: ARMv7-M assembly implementation from [SS16] 3

Benchmarking: Fast Hashing 

§ Submission packages often come with different 

implementations of SHA-2, SHA-3, or AES 

1https://github.com/XKCP/XKCP 
2https://bench.cr.yp.to/supercop.html 
3Schwabe and Stoffelen, SAC 2016 
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§ We tried to collect as many implementations as possible

§ If we missed something

‚ Send us an e-mail or talk to us

‚ Open a pull request

§ For the following results, we restrict to

‚ Only schemes that have been optimized

‚ NIST security level 1

‚ For KEMs: CCA variants

‚ Only SHA-3/SHAKE variants

§ For the full results

‚ see paper at https://ia.cr/2019/844

‚ see https://github.com/mupq/pqm4

Results 

§ Not all schemes have been optimized for this platform yet 
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KEM Speed (2) 
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KEM RAM consumption 
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KEM RAM consumption (2) 

ba
by

be
ar-

op
t

fro
do

kem
64

0sh
ake

-m
4

kyb
er5

12
-m

4

ligh
tsa

be
r-m

4

ntr
uh

ps2
04

85
09

-m
4

ntr
uh

rss
70

1-m
4

r5n
d-1

kem
cca

-0d
-m

4

r5n
d-1

kem
cca

-5d
-m

4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
by

te
s

KeyGen
Encaps
Decaps

16 



Signature RAM consumption 

dili
thi

um
2-m

4

fal
con

51
2-m

4-c
t

0

10000

20000

30000

40000

50000

60000
by

te
s

KeyGen
Sign
Verify

17 



Signature RAM consumption (2) 
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‚ 10 KEMs (6 optimized)

‚ 5 signature schemes (2 optimized)

§ Current implementations of Classic McEliece, LEDAcrypt,

NTS-KEM, GeMSS, MQDSS, Picnic, and Rainbow consume

more than 128 KiB of RAM

Ñ don’t fit

§ BIKE, HQC, ROLLO, RQC use OpenSSL/NTL/GMP

Ñ needs to be replaced to make it work

Conclusion 

§ pqm4 currently includes 
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§ Level of optimization greatly differs

‚ Most implementations don’t optimize RAM consumption

‚ No implementations optimize code size

‚ What does NIST care about?

§ Currently, Round5 seems to be the fastest on this platform

‚ But Kyber, NTRU, Saber, ThreeBears very close

Conclusion 

§ Still many schemes left to optimize Ñ please PR 
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https://github.com/mupq/pqm4 

slides and paper available at kannwischer.eu 

Thank you! 
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