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But: Majority of cryptographic devices is way smaller
e Limited RAM
e No/limited vector instructions

e Side-channels?

A\ 4

Challenges
e Do schemes even fit in limited RAM + flash?
e Are schemes efficient on small ARMs?
e What is the overhead of masking?
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Post-quantum on small devices

“It's big and it's slow”

— everyone, always

» STM32F4DISCOVERY
e ARM Cortex-M4
e 32-bit, ARMvV7E-M
e 192KiB RAM, 168 MHz

» PQM4: test and optimize
on the Cortex-M4

e github.com/mupq/pqmé
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Rationale for using STM32F4DISCOVERY boards

They are cheap (< $30)
They are huge in terms of RAM and flash

v

v

e Great for PQC — many schemes fit
e Unfortunately, pgRSA did not terminate within round 1

v

ARMVTE-M more interesting for assembly optimizations

NIST recommended Cortex-M4 for PQC evaluation

v

v

We're using it for teaching

e We have dozens of them lying around
e Our students know how to work with them
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» Goals
e Framework that eases optimization for this platform
e Automate testing and benchmarking
e Include as many schemes as possible
» 4 types of implementations
e ref: Reference C implementations from submission
packages
e clean: Slightly modified reference implementations to
satisfy basic code quality requirements 1
e opt: Optimized portable C implementations
e m4: Optimized using ARMv7E-M assembly

'see https://github.com/PQClean/PQClean
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Schemes included in pgm4— KEMs

reference optimized
BIKE XLib
Classic McEliece Xy,

CRYSTALS-Kyber v v [BKS19]
Frodo-KEM v v [BFMT18]
HQC XLib —

LAC v —

LEDAcrypt XRAM WIP

NewHope v v [AJS16]
NTRU v v [KRS19]
NTRU Prime v —

NTS-KEM XKey —

ROLLO XLib —

Round5 v v Round5 team
RQC XLib —

SABER v v [KRS19]
SIKE v —

ThreeBears v v ThreeBears team

XKey: keys too large  Xpap: implementation uses too much RAM
X1 p: available implementations depend on external libraries 6



Schemes included in pgm4— Signatures

reference optimized

CRYSTALS-Dilithium v v [GKOS18, RSGCB19]
FALCON XRrRAM v Falcon team

GeMSS XKey =

LUOV v —

MQDSS XrAM —

Picnic XRAM =

qTESLA v —

Rainbow XKey —

SPHINCS+ v —

XKey: keys too large  Xpap: implementation uses too much RAM
X, ip: available implementations depend on external libraries
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Benchmarking: Cycle Counts and RNG

» Cycle counts
e We don't want to benchmark the memory controller
» Downclock core to 24MHz — no wait states
> Allows to have comprehensible cycle count
» randombytes

e We use the hardware RNG of our platform
e Most schemes only sample seed, so speed doesn't matter
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Benchmarking: Fast Hashing

Submission packages often come with different
implementations of SHA-2, SHA-3, or AES

e We don't want to benchmark those

v

v

Our approach: Replace those with a single fast
implementation to allow fair comparison

SHA-3: ARMv7-M assembly implementation from XKCP !
SHA-2: Fast C implementation from SUPERCOP 2
AES: ARMv7-M assembly implementation from [SS16] 3

v

v
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» Not all schemes have been optimized for this platform yet
» We tried to collect as many implementations as possible
» If we missed something

e Send us an e-mail or talk to us

e Open a pull request

» For the following results, we restrict to

Only schemes that have been optimized
NIST security level 1
For KEMs: CCA variants
Only SHA-3/SHAKE variants
» For the full results
e see paper at https://ia.cr/2019/844
e see https://github.com/mupq/pqmé
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KEM Speed (2)
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Signature Speed
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Signature Speed (2)
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KEM RAM consumption
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KEM RAM consumption (2)
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Signature RAM consumption
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Signature RAM consumption (2)
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Conclusion

» pqmé currently includes
e 10 KEMs (6 optimized)

e 5 signature schemes (2 optimized)

» Current implementations of Classic McEliece, LEDAcrypt,
NTS-KEM, GeMSS, MQDSS, Picnic, and Rainbow consume
more than 128 KiB of RAM
— don't fit

» BIKE, HQC, ROLLO, RQC use OpenSSL/NTL/GMP
— needs to be replaced to make it work
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Conclusion

» Still many schemes left to optimize — please PR
» Level of optimization greatly differs

e Most implementations don't optimize RAM consumption
e No implementations optimize code size
e What does NIST care about?

» Currently, Round5 seems to be the fastest on this platform
e But Kyber, NTRU, Saber, ThreeBears very close

20
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é.\"aCl'l\ll

Thank you! O INE


https://github.com/mupq/pqm4
kannwischer.eu

References i

[4 Erdem Alkim, Philipp Jakubeit, and Peter Schwabe.
A new hope on ARM Cortex-M.
In Security, Privacy, and Advanced Cryptography Engineering,
volume 10076 of Lecture Notes in Computer Science, pages
332-349. Springer-Verlag Berlin Heidelberg, 2016.

ﬁ Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth
Oswald, and Martijn Stam.
Fly, you fool! faster frodo for the ARM Cortex-M4.
Cryptology ePrint Archive, Report 2018/1116, 2018.
https://eprint.iacr.org/2018/1116.

21


https://eprint.iacr.org/2018/1116

References ii

ﬁ Leon Botros, Matthias J. Kannwischer, and Peter Schwabe.
Memory-efficient high-speed implementation of Kyber on
Cortex-M4.

In Progress in Cryptology — Africacrypt 2019, Lecture Notes in
Computer Science, pages 209-228. Springer-Verlag Berlin
Heidelberg, 2019.

ﬁ Tim Giineysu, Markus Krausz, Tobias Oder, and Julian Speith.
Evaluation of lattice-based signature schemes in
embedded systems.

In 25th IEEE International Conference on Electronics, Circuits
and Systems, ICECS 2018, pages 385-388, 2018.

22



References iii

[§ Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe.
Faster multiplication in Z,»[x] on Cortex-M4 to speed up
NIST PQC candidates.

In Applied Cryptography and Network Security, Lecture Notes
in Computer Science, pages 281-301. Springer-Verlag Berlin
Heidelberg, 2019.

[§ Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay,
and Shivam Bhasin.

Improving speed of Dilithium’s signing procedure.
Cryptology ePrint Archive, Report 2019/420, 2019.
https://eprint.iacr.org/2019/420.

23


https://eprint.iacr.org/2019/420

