Radboud University g5t

S,
NS

pgmé4: Testing and Benchmarking NIST PQC
on ARM Cortex-M4

Matthias Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen

Radboud University, Nijmegen, The Netherlands
matthias@kannwischer.eu

Aug 24, 2019, 2nd PQC Standardization Conference, Santa Barbara

mailto:matthias@kannwischer.eu

— g L 4

AR <

» “Performance will play a larger role in the second round”

» “Performance will play a larger role in the second round”

» Round 1: Focus on Intel/AVX2 implementations

» “Performance will play a larger role in the second round”
» Round 1: Focus on Intel/AVX2 implementations

» But: Majority of cryptographic devices is way smaller

» “Performance will play a larger role in the second round”
» Round 1: Focus on Intel/AVX2 implementations

» But: Majority of cryptographic devices is way smaller
e Limited RAM

» “Performance will play a larger role in the second round”
» Round 1: Focus on Intel/AVX2 implementations

» But: Majority of cryptographic devices is way smaller

e Limited RAM
e No/limited vector instructions

» “Performance will play a larger role in the second round”
» Round 1: Focus on Intel/AVX2 implementations

» But: Majority of cryptographic devices is way smaller

e Limited RAM
e No/limited vector instructions
e Side-channels?

v

“Performance will play a larger role in the second round

Round 1: Focus on Intel/AVX2 implementations

v

But: Majority of cryptographic devices is way smaller

e Limited RAM
e No/limited vector instructions

v

e Side-channels?

A\ 4

Challenges

“Performance will play a larger role in the second round

v

Round 1: Focus on Intel/AVX2 implementations

v

v

But: Majority of cryptographic devices is way smaller
e Limited RAM
e No/limited vector instructions

e Side-channels?

A\ 4

Challenges
e Do schemes even fit in limited RAM + flash?

“Performance will play a larger role in the second round

v

Round 1: Focus on Intel/AVX2 implementations

v

v

But: Majority of cryptographic devices is way smaller
e Limited RAM
e No/limited vector instructions

e Side-channels?

A\ 4

Challenges
e Do schemes even fit in limited RAM + flash?
e Are schemes efficient on small ARMs?

“Performance will play a larger role in the second round

v

Round 1: Focus on Intel/AVX2 implementations

v

v

But: Majority of cryptographic devices is way smaller
e Limited RAM
e No/limited vector instructions

e Side-channels?

A\ 4

Challenges
e Do schemes even fit in limited RAM + flash?
e Are schemes efficient on small ARMs?
e What is the overhead of masking?

Post-quantum on small devices

“It's big and it's slow”

github.com/mupq/pqm4

Post-quantum on small devices

“It's big and it's slow”
— everyone, always

github.com/mupq/pqm4

Post-quantum on small devices

“It's big and it's slow”

— everyone, always

» STM32F4DISCOVERY
e ARM Cortex-M4
e 32-bit, ARMvV7E-M
e 192KiB RAM, 168 MHz

» PQM4: test and optimize
on the Cortex-M4

e github.com/mupq/pqmé

github.com/mupq/pqm4

Rationale for using STM32F4DISCOVERY boards

» They are cheap (< $30)

Rationale for using STM32F4DISCOVERY boards

» They are cheap (< $30)
» They are huge in terms of RAM and flash

Rationale for using STM32F4DISCOVERY boards

» They are cheap (< $30)
» They are huge in terms of RAM and flash
e Great for PQC — many schemes fit

Rationale for using STM32F4DISCOVERY boards

» They are cheap (< $30)
» They are huge in terms of RAM and flash

e Great for PQC — many schemes fit
e Unfortunately, pgRSA did not terminate within round 1

Rationale for using STM32F4DISCOVERY boards

» They are cheap (< $30)
» They are huge in terms of RAM and flash

e Great for PQC — many schemes fit
e Unfortunately, pgRSA did not terminate within round 1

» ARMVT7E-M more interesting for assembly optimizations

Rationale for using STM32F4DISCOVERY boards

They are cheap (< $30)

v

v

They are huge in terms of RAM and flash

e Great for PQC — many schemes fit
e Unfortunately, pgRSA did not terminate within round 1

v

ARMVTE-M more interesting for assembly optimizations

NIST recommended Cortex-M4 for PQC evaluation

v

Rationale for using STM32F4DISCOVERY boards

They are cheap (< $30)
They are huge in terms of RAM and flash

v

v

e Great for PQC — many schemes fit
e Unfortunately, pgRSA did not terminate within round 1

v

ARMVTE-M more interesting for assembly optimizations

NIST recommended Cortex-M4 for PQC evaluation

v

v

We're using it for teaching

Rationale for using STM32F4DISCOVERY boards

They are cheap (< $30)
They are huge in terms of RAM and flash

v

v

e Great for PQC — many schemes fit
e Unfortunately, pgRSA did not terminate within round 1

v

ARMVTE-M more interesting for assembly optimizations

NIST recommended Cortex-M4 for PQC evaluation

v

v

We're using it for teaching

e We have dozens of them lying around

Rationale for using STM32F4DISCOVERY boards

They are cheap (< $30)
They are huge in terms of RAM and flash

v

v

e Great for PQC — many schemes fit
e Unfortunately, pgRSA did not terminate within round 1

v

ARMVTE-M more interesting for assembly optimizations

NIST recommended Cortex-M4 for PQC evaluation

v

v

We're using it for teaching

e We have dozens of them lying around
e Our students know how to work with them

» Goals

'see https://github.com/PQClean/PQClean

https://github.com/PQClean/PQClean

» Goals

e Framework that eases optimization for this platform

'see https://github.com/PQClean/PQClean

https://github.com/PQClean/PQClean

» Goals

e Framework that eases optimization for this platform
e Automate testing and benchmarking

'see https://github.com/PQClean/PQClean

https://github.com/PQClean/PQClean

» Goals
e Framework that eases optimization for this platform
e Automate testing and benchmarking
e Include as many schemes as possible

'see https://github.com/PQClean/PQClean

https://github.com/PQClean/PQClean

» Goals

e Framework that eases optimization for this platform
e Automate testing and benchmarking
e Include as many schemes as possible

» 4 types of implementations

'see https://github.com/PQClean/PQClean

https://github.com/PQClean/PQClean

» Goals
e Framework that eases optimization for this platform
e Automate testing and benchmarking
e Include as many schemes as possible

» 4 types of implementations

e ref: Reference C implementations from submission
packages

'see https://github.com/PQClean/PQClean

https://github.com/PQClean/PQClean

» Goals
e Framework that eases optimization for this platform
e Automate testing and benchmarking
e Include as many schemes as possible

» 4 types of implementations

e ref: Reference C implementations from submission
packages

e clean: Slightly modified reference implementations to
satisfy basic code quality requirements 1

'see https://github.com/PQClean/PQClean

https://github.com/PQClean/PQClean

» Goals
e Framework that eases optimization for this platform
e Automate testing and benchmarking
e Include as many schemes as possible
» 4 types of implementations
e ref: Reference C implementations from submission
packages
e clean: Slightly modified reference implementations to
satisfy basic code quality requirements 1
e opt: Optimized portable C implementations

'see https://github.com/PQClean/PQClean

https://github.com/PQClean/PQClean

» Goals
e Framework that eases optimization for this platform
e Automate testing and benchmarking
e Include as many schemes as possible
» 4 types of implementations
e ref: Reference C implementations from submission
packages
e clean: Slightly modified reference implementations to
satisfy basic code quality requirements 1
e opt: Optimized portable C implementations
e m4: Optimized using ARMv7E-M assembly

'see https://github.com/PQClean/PQClean

https://github.com/PQClean/PQClean

Schemes included in pgm4— KEMs

reference optimized
BIKE XLib
Classic McEliece Xy,

CRYSTALS-Kyber v v [BKS19]
Frodo-KEM v v [BFMT18]
HQC XLib —

LAC v —

LEDAcrypt XRAM WIP

NewHope v v [AJS16]
NTRU v v [KRS19]
NTRU Prime v —

NTS-KEM XKey —

ROLLO XLib —

Round5 v v Round5 team
RQC XLib —

SABER v v [KRS19]
SIKE v —

ThreeBears v v ThreeBears team

XKey: keys too large Xpap: implementation uses too much RAM
X1 p: available implementations depend on external libraries 6

Schemes included in pgm4— Signatures

reference optimized

CRYSTALS-Dilithium v v [GKOS18, RSGCB19]
FALCON XRrRAM v Falcon team

GeMSS XKey =

LUOV v —

MQDSS XrAM —

Picnic XRAM =

qTESLA v —

Rainbow XKey —

SPHINCS+ v —

XKey: keys too large Xpap: implementation uses too much RAM
X, ip: available implementations depend on external libraries

Benchmarking: Cycle Counts and RNG

» Cycle counts

Benchmarking: Cycle Counts and RNG

» Cycle counts

e We don't want to benchmark the memory controller

Benchmarking: Cycle Counts and RNG

» Cycle counts
e We don't want to benchmark the memory controller

» Downclock core to 24MHz — no wait states

Benchmarking: Cycle Counts and RNG

» Cycle counts
e We don't want to benchmark the memory controller

» Downclock core to 24MHz — no wait states
> Allows to have comprehensible cycle count

Benchmarking: Cycle Counts and RNG

» Cycle counts
e We don't want to benchmark the memory controller
» Downclock core to 24MHz — no wait states

> Allows to have comprehensible cycle count

» randombytes

Benchmarking: Cycle Counts and RNG

» Cycle counts
e We don't want to benchmark the memory controller
» Downclock core to 24MHz — no wait states
> Allows to have comprehensible cycle count
» randombytes

e We use the hardware RNG of our platform

Benchmarking: Cycle Counts and RNG

» Cycle counts
e We don't want to benchmark the memory controller
» Downclock core to 24MHz — no wait states
> Allows to have comprehensible cycle count
» randombytes

e We use the hardware RNG of our platform
e Most schemes only sample seed, so speed doesn't matter

Benchmarking: Fast Hashing

» Submission packages often come with different
implementations of SHA-2, SHA-3, or AES

"https://github.com/XKCP/XKCP
2https://bench.cr.yp.to/supercop.html
3Schwabe and Stoffelen, SAC 2016

https://github.com/XKCP/XKCP
https://bench.cr.yp.to/supercop.html

Benchmarking: Fast Hashing

» Submission packages often come with different
implementations of SHA-2, SHA-3, or AES

e We don't want to benchmark those

"https://github.com/XKCP/XKCP
2https://bench.cr.yp.to/supercop.html
3Schwabe and Stoffelen, SAC 2016

https://github.com/XKCP/XKCP
https://bench.cr.yp.to/supercop.html

Benchmarking: Fast Hashing

» Submission packages often come with different
implementations of SHA-2, SHA-3, or AES

e We don't want to benchmark those

» Our approach: Replace those with a single fast
implementation to allow fair comparison

"https://github.com/XKCP/XKCP
2https://bench.cr.yp.to/supercop.html
3Schwabe and Stoffelen, SAC 2016

https://github.com/XKCP/XKCP
https://bench.cr.yp.to/supercop.html

Benchmarking: Fast Hashing

» Submission packages often come with different
implementations of SHA-2, SHA-3, or AES

e We don't want to benchmark those

» Our approach: Replace those with a single fast
implementation to allow fair comparison

» SHA-3: ARMv7-M assembly implementation from XKCP 1

"https://github.com/XKCP/XKCP
2https://bench.cr.yp.to/supercop.html
3Schwabe and Stoffelen, SAC 2016

https://github.com/XKCP/XKCP
https://bench.cr.yp.to/supercop.html

Benchmarking: Fast Hashing

Submission packages often come with different
implementations of SHA-2, SHA-3, or AES

e We don't want to benchmark those

v

Our approach: Replace those with a single fast

v

implementation to allow fair comparison
SHA-3: ARMv7-M assembly implementation from XKCP !
SHA-2: Fast C implementation from SUPERCOP 2

v

v

"https://github.com/XKCP/XKCP
2https://bench.cr.yp.to/supercop.html
3Schwabe and Stoffelen, SAC 2016

https://github.com/XKCP/XKCP
https://bench.cr.yp.to/supercop.html

Benchmarking: Fast Hashing

Submission packages often come with different
implementations of SHA-2, SHA-3, or AES

e We don't want to benchmark those

v

v

Our approach: Replace those with a single fast
implementation to allow fair comparison

SHA-3: ARMv7-M assembly implementation from XKCP !
SHA-2: Fast C implementation from SUPERCOP 2
AES: ARMv7-M assembly implementation from [SS16] 3

v

v

v

"https://github.com/XKCP/XKCP
2https://bench.cr.yp.to/supercop.html
3Schwabe and Stoffelen, SAC 2016

https://github.com/XKCP/XKCP
https://bench.cr.yp.to/supercop.html

» Not all schemes have been optimized for this platform yet

10

https://ia.cr/2019/844
https://github.com/mupq/pqm4

» Not all schemes have been optimized for this platform yet

» We tried to collect as many implementations as possible

10

https://ia.cr/2019/844
https://github.com/mupq/pqm4

» Not all schemes have been optimized for this platform yet
» We tried to collect as many implementations as possible

» If we missed something

10

https://ia.cr/2019/844
https://github.com/mupq/pqm4

» Not all schemes have been optimized for this platform yet
» We tried to collect as many implementations as possible
» If we missed something

e Send us an e-mail or talk to us

10

https://ia.cr/2019/844
https://github.com/mupq/pqm4

» Not all schemes have been optimized for this platform yet
» We tried to collect as many implementations as possible
» If we missed something

e Send us an e-mail or talk to us

e Open a pull request

10

https://ia.cr/2019/844
https://github.com/mupq/pqm4

» Not all schemes have been optimized for this platform yet
» We tried to collect as many implementations as possible
» If we missed something

e Send us an e-mail or talk to us

e Open a pull request

» For the following results, we restrict to

10

https://ia.cr/2019/844
https://github.com/mupq/pqm4

» Not all schemes have been optimized for this platform yet
» We tried to collect as many implementations as possible
» If we missed something

e Send us an e-mail or talk to us

e Open a pull request

» For the following results, we restrict to

e Only schemes that have been optimized

10

https://ia.cr/2019/844
https://github.com/mupq/pqm4

» Not all schemes have been optimized for this platform yet
» We tried to collect as many implementations as possible
» If we missed something

e Send us an e-mail or talk to us

e Open a pull request
» For the following results, we restrict to

e Only schemes that have been optimized

e NIST security level 1

10

https://ia.cr/2019/844
https://github.com/mupq/pqm4

» Not all schemes have been optimized for this platform yet
» We tried to collect as many implementations as possible
» If we missed something

e Send us an e-mail or talk to us

e Open a pull request
» For the following results, we restrict to

e Only schemes that have been optimized

e NIST security level 1
e For KEMs: CCA variants

10

https://ia.cr/2019/844
https://github.com/mupq/pqm4

Not all schemes have been optimized for this platform yet

v

v

We tried to collect as many implementations as possible

v

If we missed something
e Send us an e-mail or talk to us
e Open a pull request

v

For the following results, we restrict to
e Only schemes that have been optimized
e NIST security level 1
e For KEMs: CCA variants
e Only SHA-3/SHAKE variants

10

https://ia.cr/2019/844
https://github.com/mupq/pqm4

Not all schemes have been optimized for this platform yet

v

v

We tried to collect as many implementations as possible

v

If we missed something
e Send us an e-mail or talk to us
e Open a pull request

v

For the following results, we restrict to
e Only schemes that have been optimized
e NIST security level 1
e For KEMs: CCA variants
e Only SHA-3/SHAKE variants

For the full results

v

10

https://ia.cr/2019/844
https://github.com/mupq/pqm4

» Not all schemes have been optimized for this platform yet
» We tried to collect as many implementations as possible
» If we missed something

e Send us an e-mail or talk to us

e Open a pull request

» For the following results, we restrict to

Only schemes that have been optimized
NIST security level 1

For KEMs: CCA variants

Only SHA-3/SHAKE variants

» For the full results
e see paper at https://ia.cr/2019/844

10

https://ia.cr/2019/844
https://github.com/mupq/pqm4

» Not all schemes have been optimized for this platform yet
» We tried to collect as many implementations as possible
» If we missed something

e Send us an e-mail or talk to us

e Open a pull request

» For the following results, we restrict to

Only schemes that have been optimized
NIST security level 1
For KEMs: CCA variants
Only SHA-3/SHAKE variants
» For the full results
e see paper at https://ia.cr/2019/844
e see https://github.com/mupq/pqmé

10

https://ia.cr/2019/844
https://github.com/mupq/pqm4

KEM Speed

160000 A
mmm KeyGen
140000 - #== Encaps
mmm Decaps
120000 A
100000 A
%]
K]
S, 80000
[®)
~
60000 A
40000 A
20000 A
0 T T T T T T :
x ™ ™ ™) ™) ™
R < N < < N PN S
o N & & ¥ & &
« 2 re) X » A '3 %
3 & & & ° % & %
X O P o & & <
AN © =) © A N & @
\(_ef(\ «‘SQQ ¢ N N
o < N o
& S & 8

KEM Speed (2)

2000
mmm KeyGen
1750 mmm Encaps
mmm Decaps

1500 A
1250
(%]
o
S, 1000 1
o
x
750 -
500 -
250 -
0 p
X > > > > > > >
R N < < < < <
o N g & & ¥ RS &
& & AY) 2) A 9 y
N N4 N 2 Q o & &
) & 2 & N & & &
* J 2 © & & &
& @QQ S . o
S < o S
&<°b < o &

12

Signature Speed

200000 -

mmm KeyGen
mmm Sign
mm Verify

175000 1

150000 A

125000 A

100000 A

k cycles

75000 A

50000 A

25000 A

13

Signature Speed (2)

40000
mm KeyGen
350001 ™= Sign
mm Verify
30000 A
25000 A
%]
o
£ 20000 -
(S}
X
15000 -
10000 -
5000 A
O _
™ X
,Vé‘ o
& €
R ~V
' O
& <
& &
@

14

KEM RAM consumption

mmm KeyGen
mmm Encaps
B Decaps

15

KEM RAM consumption (2)

9000
mmm KeyGen
8000 A W Encaps
]
7000 - Decaps
6000 -
v 5000 -
g
>
Q

4000 -

3000 A
2000 A
1000 A
0 _
5 > > > x > O >
K N N N < N
& & & & AN S
2 < o X o) 4) %
N & ¢ & o < & &
& »° L N > s < <
< © = © A & & &
& K N e o
© ¢ & &
& ¢ g &

16

Signature RAM consumption

60000 -

50000 -

40000 -

30000 -

20000 -

10000 -

mmm KeyGen
mmm Sign
mm Verify

17

Signature RAM consumption (2)

5000 -

mmm KeyGen
mmm Sign
] i
4000 4 Verify

3000 A

bytes

2000 A

1000 -

18

Conclusion

» pamé currently includes

19

Conclusion

» pqmé currently includes
e 10 KEMs (6 optimized)

19

Conclusion

» pamé currently includes

e 10 KEMs (6 optimized)
e 5 signature schemes (2 optimized)

19

Conclusion

» pgmé currently includes
e 10 KEMs (6 optimized)
e 5 signature schemes (2 optimized)

» Current implementations of Classic McEliece, LEDAcrypt,
NTS-KEM, GeMSS, MQDSS, Picnic, and Rainbow consume
more than 128 KiB of RAM
— don't fit

19

Conclusion

» pqmé currently includes
e 10 KEMs (6 optimized)

e 5 signature schemes (2 optimized)

» Current implementations of Classic McEliece, LEDAcrypt,
NTS-KEM, GeMSS, MQDSS, Picnic, and Rainbow consume
more than 128 KiB of RAM
— don't fit

» BIKE, HQC, ROLLO, RQC use OpenSSL/NTL/GMP
— needs to be replaced to make it work

19

Conclusion

» Still many schemes left to optimize — please PR

20

Conclusion

» Still many schemes left to optimize — please PR

» Level of optimization greatly differs

20

Conclusion

» Still many schemes left to optimize — please PR
» Level of optimization greatly differs

e Most implementations don't optimize RAM consumption

20

Conclusion

» Still many schemes left to optimize — please PR
» Level of optimization greatly differs

e Most implementations don't optimize RAM consumption
e No implementations optimize code size

20

Conclusion

» Still many schemes left to optimize — please PR
» Level of optimization greatly differs

e Most implementations don't optimize RAM consumption
e No implementations optimize code size
e What does NIST care about?

20

Conclusion

» Still many schemes left to optimize — please PR
» Level of optimization greatly differs

e Most implementations don't optimize RAM consumption
e No implementations optimize code size
e What does NIST care about?

» Currently, Round5 seems to be the fastest on this platform

20

Conclusion

» Still many schemes left to optimize — please PR
» Level of optimization greatly differs

e Most implementations don't optimize RAM consumption
e No implementations optimize code size
e What does NIST care about?

» Currently, Round5 seems to be the fastest on this platform
e But Kyber, NTRU, Saber, ThreeBears very close

20

https://github.com/mupq/pqmé

slides and paper available at kannwischer.eu

é.\"aCl'l\ll

Thank you! O INE

https://github.com/mupq/pqm4
kannwischer.eu

References i

[4 Erdem Alkim, Philipp Jakubeit, and Peter Schwabe.
A new hope on ARM Cortex-M.
In Security, Privacy, and Advanced Cryptography Engineering,
volume 10076 of Lecture Notes in Computer Science, pages
332-349. Springer-Verlag Berlin Heidelberg, 2016.

ﬁ Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth
Oswald, and Martijn Stam.
Fly, you fool! faster frodo for the ARM Cortex-M4.
Cryptology ePrint Archive, Report 2018/1116, 2018.
https://eprint.iacr.org/2018/1116.

21

https://eprint.iacr.org/2018/1116

References ii

ﬁ Leon Botros, Matthias J. Kannwischer, and Peter Schwabe.
Memory-efficient high-speed implementation of Kyber on
Cortex-M4.

In Progress in Cryptology — Africacrypt 2019, Lecture Notes in
Computer Science, pages 209-228. Springer-Verlag Berlin
Heidelberg, 2019.

ﬁ Tim Giineysu, Markus Krausz, Tobias Oder, and Julian Speith.
Evaluation of lattice-based signature schemes in
embedded systems.

In 25th IEEE International Conference on Electronics, Circuits
and Systems, ICECS 2018, pages 385-388, 2018.

22

References iii

[§ Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe.
Faster multiplication in Z,»[x] on Cortex-M4 to speed up
NIST PQC candidates.

In Applied Cryptography and Network Security, Lecture Notes
in Computer Science, pages 281-301. Springer-Verlag Berlin
Heidelberg, 2019.

[§ Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay,
and Shivam Bhasin.

Improving speed of Dilithium’s signing procedure.
Cryptology ePrint Archive, Report 2019/420, 2019.
https://eprint.iacr.org/2019/420.

23

https://eprint.iacr.org/2019/420

