
pqm4: Testing and Benchmarking NIST PQC 

on ARM Cortex-M4 

Matthias Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen 
Radboud University, Nijmegen, The Netherlands 
matthias@kannwischer.eu 

Aug 24, 2019, 2nd PQC Standardization Conference, Santa Barbara 

mailto:matthias@kannwischer.eu




§ Round 1: Focus on Intel/AVX2 implementations

§ But: Majority of cryptographic devices is way smaller

‚ Limited RAM

‚ No/limited vector instructions

‚ Side-channels?

§ Challenges

‚ Do schemes even fit in limited RAM + flash?

‚ Are schemes efficient on small ARMs?

‚ What is the overhead of masking?

Motivation 

§ “Performance will play a larger role in the second round” 

2 



§ But: Majority of cryptographic devices is way smaller

‚ Limited RAM

‚ No/limited vector instructions

‚ Side-channels?

§ Challenges

‚ Do schemes even fit in limited RAM + flash?

‚ Are schemes efficient on small ARMs?

‚ What is the overhead of masking?

Motivation 

§ “Performance will play a larger role in the second round” 

§ Round 1: Focus on Intel/AVX2 implementations 

2 



‚ Limited RAM

‚ No/limited vector instructions

‚ Side-channels?

§ Challenges

‚ Do schemes even fit in limited RAM + flash?

‚ Are schemes efficient on small ARMs?

‚ What is the overhead of masking?

Motivation 

§ “Performance will play a larger role in the second round” 

§ Round 1: Focus on Intel/AVX2 implementations 

§ But: Majority of cryptographic devices is way smaller 

2 



‚ No/limited vector instructions

‚ Side-channels?

§ Challenges

‚ Do schemes even fit in limited RAM + flash?

‚ Are schemes efficient on small ARMs?

‚ What is the overhead of masking?

Motivation 

§ “Performance will play a larger role in the second round” 

§ Round 1: Focus on Intel/AVX2 implementations 

§ But: Majority of cryptographic devices is way smaller 

‚ Limited RAM 

2 



‚ Side-channels?

§ Challenges

‚ Do schemes even fit in limited RAM + flash?

‚ Are schemes efficient on small ARMs?

‚ What is the overhead of masking?

Motivation 

§ “Performance will play a larger role in the second round” 

§ Round 1: Focus on Intel/AVX2 implementations 

§ But: Majority of cryptographic devices is way smaller 

‚ Limited RAM 

‚ No/limited vector instructions 

2 



§ Challenges

‚ Do schemes even fit in limited RAM + flash?

‚ Are schemes efficient on small ARMs?

‚ What is the overhead of masking?

Motivation 

§ “Performance will play a larger role in the second round” 

§ Round 1: Focus on Intel/AVX2 implementations 

§ But: Majority of cryptographic devices is way smaller 

‚ Limited RAM 

‚ No/limited vector instructions 

‚ Side-channels? 

2 



‚ Do schemes even fit in limited RAM + flash?

‚ Are schemes efficient on small ARMs?

‚ What is the overhead of masking?

Motivation 

§ “Performance will play a larger role in the second round” 

§ Round 1: Focus on Intel/AVX2 implementations 

§ But: Majority of cryptographic devices is way smaller 

‚ Limited RAM 

‚ No/limited vector instructions 

‚ Side-channels? 

§ Challenges 

2 



‚ Are schemes efficient on small ARMs?

‚ What is the overhead of masking?

Motivation 

§ “Performance will play a larger role in the second round” 

§ Round 1: Focus on Intel/AVX2 implementations 

§ But: Majority of cryptographic devices is way smaller 

‚ Limited RAM 

‚ No/limited vector instructions 

‚ Side-channels? 

§ Challenges 

‚ Do schemes even fit in limited RAM + flash? 

2 



‚ What is the overhead of masking?

Motivation 

§ “Performance will play a larger role in the second round” 

§ Round 1: Focus on Intel/AVX2 implementations 

§ But: Majority of cryptographic devices is way smaller 

‚ Limited RAM 

‚ No/limited vector instructions 

‚ Side-channels? 

§ Challenges 

‚ Do schemes even fit in limited RAM + flash? 

‚ Are schemes efficient on small ARMs? 

2 



Motivation 

§ “Performance will play a larger role in the second round” 

§ Round 1: Focus on Intel/AVX2 implementations 

§ But: Majority of cryptographic devices is way smaller 

‚ Limited RAM 

‚ No/limited vector instructions 

‚ Side-channels? 

§ Challenges 

‚ Do schemes even fit in limited RAM + flash? 

‚ Are schemes efficient on small ARMs? 

‚ What is the overhead of masking? 

2 



– everyone, always

§ STM32F4DISCOVERY

‚ ARM Cortex-M4

‚ 32-bit, ARMv7E-M

‚ 192KiB RAM, 168MHz

§ PQM4: test and optimize

on the Cortex-M4

‚ github.com/mupq/pqm4

Post-quantum on small devices 

“It’s big and it’s slow” 

3 

github.com/mupq/pqm4


§ STM32F4DISCOVERY

‚ ARM Cortex-M4

‚ 32-bit, ARMv7E-M

‚ 192KiB RAM, 168MHz

§ PQM4: test and optimize

on the Cortex-M4

‚ github.com/mupq/pqm4

Post-quantum on small devices 

“It’s big and it’s slow” 

– everyone, always 

3 

github.com/mupq/pqm4


Post-quantum on small devices 

“It’s big and it’s slow” 

– everyone, always 

§ STM32F4DISCOVERY 

‚ ARM Cortex-M4 

‚ 32-bit, ARMv7E-M 

‚ 192 KiB RAM, 168 MHz 

§ PQM4: test and optimize 

on the Cortex-M4 

‚ github.com/mupq/pqm4 

3 

github.com/mupq/pqm4


§ They are huge in terms of RAM and flash

‚ Great for PQC – many schemes fit

‚ Unfortunately, pqRSA did not terminate within round 1

§ ARMv7E-M more interesting for assembly optimizations

§ NIST recommended Cortex-M4 for PQC evaluation

§ We’re using it for teaching

‚ We have dozens of them lying around

‚ Our students know how to work with them

Rationale for using STM32F4DISCOVERY boards 

§ They are cheap (ă $30) 

4 



‚ Great for PQC – many schemes fit

‚ Unfortunately, pqRSA did not terminate within round 1

§ ARMv7E-M more interesting for assembly optimizations

§ NIST recommended Cortex-M4 for PQC evaluation

§ We’re using it for teaching

‚ We have dozens of them lying around

‚ Our students know how to work with them

Rationale for using STM32F4DISCOVERY boards 

§ They are cheap (ă $30) 

§ They are huge in terms of RAM and flash 

4 



‚ Unfortunately, pqRSA did not terminate within round 1

§ ARMv7E-M more interesting for assembly optimizations

§ NIST recommended Cortex-M4 for PQC evaluation

§ We’re using it for teaching

‚ We have dozens of them lying around

‚ Our students know how to work with them

Rationale for using STM32F4DISCOVERY boards 

§ They are cheap (ă $30) 

§ They are huge in terms of RAM and flash 

‚ Great for PQC – many schemes fit 

4 



§ ARMv7E-M more interesting for assembly optimizations

§ NIST recommended Cortex-M4 for PQC evaluation

§ We’re using it for teaching

‚ We have dozens of them lying around

‚ Our students know how to work with them

Rationale for using STM32F4DISCOVERY boards 

§ They are cheap (ă $30) 

§ They are huge in terms of RAM and flash 

‚ Great for PQC – many schemes fit 

‚ Unfortunately, pqRSA did not terminate within round 1 

4 



§ NIST recommended Cortex-M4 for PQC evaluation

§ We’re using it for teaching

‚ We have dozens of them lying around

‚ Our students know how to work with them

Rationale for using STM32F4DISCOVERY boards 

§ They are cheap (ă $30) 

§ They are huge in terms of RAM and flash 

‚ Great for PQC – many schemes fit 

‚ Unfortunately, pqRSA did not terminate within round 1 

§ ARMv7E-M more interesting for assembly optimizations 

4 



§ We’re using it for teaching

‚ We have dozens of them lying around

‚ Our students know how to work with them

Rationale for using STM32F4DISCOVERY boards 

§ They are cheap (ă $30) 

§ They are huge in terms of RAM and flash 

‚ Great for PQC – many schemes fit 

‚ Unfortunately, pqRSA did not terminate within round 1 

§ ARMv7E-M more interesting for assembly optimizations 

§ NIST recommended Cortex-M4 for PQC evaluation 

4 



‚ We have dozens of them lying around

‚ Our students know how to work with them

Rationale for using STM32F4DISCOVERY boards 

§ They are cheap (ă $30) 

§ They are huge in terms of RAM and flash 

‚ Great for PQC – many schemes fit 

‚ Unfortunately, pqRSA did not terminate within round 1 

§ ARMv7E-M more interesting for assembly optimizations 

§ NIST recommended Cortex-M4 for PQC evaluation 

§ We’re using it for teaching 

4 



‚ Our students know how to work with them

Rationale for using STM32F4DISCOVERY boards 

§ They are cheap (ă $30) 

§ They are huge in terms of RAM and flash 

‚ Great for PQC – many schemes fit 

‚ Unfortunately, pqRSA did not terminate within round 1 

§ ARMv7E-M more interesting for assembly optimizations 

§ NIST recommended Cortex-M4 for PQC evaluation 

§ We’re using it for teaching 

‚ We have dozens of them lying around 

4 



Rationale for using STM32F4DISCOVERY boards 

§ They are cheap (ă $30) 

§ They are huge in terms of RAM and flash 

‚ Great for PQC – many schemes fit 

‚ Unfortunately, pqRSA did not terminate within round 1 

§ ARMv7E-M more interesting for assembly optimizations 

§ NIST recommended Cortex-M4 for PQC evaluation 

§ We’re using it for teaching 

‚ We have dozens of them lying around 

‚ Our students know how to work with them 

4 



pqm4

§ Goals

‚ Framework that eases optimization for this platform

‚ Automate testing and benchmarking

‚ Include as many schemes as possible

§ 4 types of implementations

‚ ref: Reference C implementations from submission

packages

‚ clean: Slightly modified reference implementations to

satisfy basic code quality requirements 1

‚ opt: Optimized portable C implementations

‚ m4: Optimized using ARMv7E-M assembly

1see https://github.com/PQClean/PQClean

5

https://github.com/PQClean/PQClean


pqm4

§ Goals

‚ Framework that eases optimization for this platform

‚ Automate testing and benchmarking

‚ Include as many schemes as possible

§ 4 types of implementations

‚ ref: Reference C implementations from submission

packages

‚ clean: Slightly modified reference implementations to

satisfy basic code quality requirements 1

‚ opt: Optimized portable C implementations

‚ m4: Optimized using ARMv7E-M assembly

1see https://github.com/PQClean/PQClean

5

https://github.com/PQClean/PQClean


pqm4

§ Goals

‚ Framework that eases optimization for this platform

‚ Automate testing and benchmarking

‚ Include as many schemes as possible

§ 4 types of implementations

‚ ref: Reference C implementations from submission

packages

‚ clean: Slightly modified reference implementations to

satisfy basic code quality requirements 1

‚ opt: Optimized portable C implementations

‚ m4: Optimized using ARMv7E-M assembly

1see https://github.com/PQClean/PQClean

5

https://github.com/PQClean/PQClean


pqm4

§ Goals

‚ Framework that eases optimization for this platform

‚ Automate testing and benchmarking

‚ Include as many schemes as possible

§ 4 types of implementations

‚ ref: Reference C implementations from submission

packages

‚ clean: Slightly modified reference implementations to

satisfy basic code quality requirements 1

‚ opt: Optimized portable C implementations

‚ m4: Optimized using ARMv7E-M assembly

1see https://github.com/PQClean/PQClean

5

https://github.com/PQClean/PQClean


‚ ref: Reference C implementations from submission

packages

‚ clean: Slightly modified reference implementations to

satisfy basic code quality requirements 1

‚ opt: Optimized portable C implementations

‚ m4: Optimized using ARMv7E-M assembly

pqm4 

§ Goals 

‚ Framework that eases optimization for this platform 

‚ Automate testing and benchmarking 

‚ Include as many schemes as possible 

§ 4 types of implementations 

1 see https://github.com/PQClean/PQClean 

5 

https://github.com/PQClean/PQClean


‚ clean: Slightly modified reference implementations to

satisfy basic code quality requirements 1

‚ opt: Optimized portable C implementations

‚ m4: Optimized using ARMv7E-M assembly

pqm4 

§ Goals 

‚ Framework that eases optimization for this platform 

‚ Automate testing and benchmarking 

‚ Include as many schemes as possible 

§ 4 types of implementations 

‚ ref: Reference C implementations from submission 

packages 

1 see https://github.com/PQClean/PQClean 

5 

https://github.com/PQClean/PQClean


‚ opt: Optimized portable C implementations

‚ m4: Optimized using ARMv7E-M assembly

pqm4 

§ Goals 

‚ Framework that eases optimization for this platform 

‚ Automate testing and benchmarking 

‚ Include as many schemes as possible 

§ 4 types of implementations 

‚ ref: Reference C implementations from submission 

packages 

‚ clean: Slightly modified reference implementations to 

satisfy basic code quality requirements 1 

1 see https://github.com/PQClean/PQClean 

5 

https://github.com/PQClean/PQClean


‚ m4: Optimized using ARMv7E-M assembly

pqm4 

§ Goals 

‚ Framework that eases optimization for this platform 

‚ Automate testing and benchmarking 

‚ Include as many schemes as possible 

§ 4 types of implementations 

‚ ref: Reference C implementations from submission 

packages 

‚ clean: Slightly modified reference implementations to 

satisfy basic code quality requirements 1 

‚ opt: Optimized portable C implementations 

1 see https://github.com/PQClean/PQClean 

5 

https://github.com/PQClean/PQClean


pqm4 

§ Goals 

‚ Framework that eases optimization for this platform 

‚ Automate testing and benchmarking 

‚ Include as many schemes as possible 

§ 4 types of implementations 

‚ ref: Reference C implementations from submission 

packages 

‚ clean: Slightly modified reference implementations to 

satisfy basic code quality requirements 1 

‚ opt: Optimized portable C implementations 

‚ m4: Optimized using ARMv7E-M assembly 

1 see https://github.com/PQClean/PQClean 

5 

https://github.com/PQClean/PQClean


Schemes included in pqm4– KEMs 

reference optimized 
BIKE 7Lib — 
Classic McEliece 7Key — 
CRYSTALS-Kyber 
Frodo-KEM 

3 
3 

3 
3 

[BKS19] 
[BFM ` 18] 

HQC 7Lib — 
LAC 3 — 
LEDAcrypt 7RAM WIP 
NewHope 3 3 [AJS16] 
NTRU 3 3 [KRS19] 
NTRU Prime 3 — 
NTS-KEM 7Key — 
ROLLO 7Lib — 
Round5 3 3 Round5 team 
RQC 7Lib — 
SABER 3 3 [KRS19] 
SIKE 3 — 
ThreeBears 3 3 ThreeBears team 

7Key : keys too large 7RAM : implementation uses too much RAM 

7Lib: available implementations depend on external libraries 6 



Schemes included in pqm4– Signatures 

reference optimized 

CRYSTALS-Dilithium 3 3 [GKOS18, RSGCB19] 

FALCON 7RAM 3 Falcon team 

GeMSS 7Key — 

LUOV 3 — 

MQDSS 7RAM — 

Picnic 7RAM — 

qTESLA 3 — 

Rainbow 7Key — 

SPHINCS+ 3 — 

7Key : keys too large 7RAM : implementation uses too much RAM 

7Lib: available implementations depend on external libraries 

7 



Benchmarking: Cycle Counts and RNG

§ Cycle counts

‚ We don’t want to benchmark the memory controller

§ Downclock core to 24MHz Ñ no wait states

§ Allows to have comprehensible cycle count

§ randombytes

‚ We use the hardware RNG of our platform

‚ Most schemes only sample seed, so speed doesn’t matter

8



§ Downclock core to 24MHz Ñ no wait states

§ Allows to have comprehensible cycle count

§ randombytes

‚ We use the hardware RNG of our platform

‚ Most schemes only sample seed, so speed doesn’t matter

Benchmarking: Cycle Counts and RNG 

§ Cycle counts 

‚ We don’t want to benchmark the memory controller 

8 



§ Allows to have comprehensible cycle count

§ randombytes

‚ We use the hardware RNG of our platform

‚ Most schemes only sample seed, so speed doesn’t matter

Benchmarking: Cycle Counts and RNG 

§ Cycle counts 

‚ We don’t want to benchmark the memory controller 

§ Downclock core to 24MHz Ñ no wait states 

8 



§ randombytes

‚ We use the hardware RNG of our platform

‚ Most schemes only sample seed, so speed doesn’t matter

Benchmarking: Cycle Counts and RNG 

§ Cycle counts 

‚ We don’t want to benchmark the memory controller 

§ Downclock core to 24MHz Ñ no wait states 
§ Allows to have comprehensible cycle count 

8 



‚ We use the hardware RNG of our platform

‚ Most schemes only sample seed, so speed doesn’t matter

Benchmarking: Cycle Counts and RNG 

§ Cycle counts 

‚ We don’t want to benchmark the memory controller 

§ Downclock core to 24MHz Ñ no wait states 
§ Allows to have comprehensible cycle count 

§ randombytes 

8 



‚ Most schemes only sample seed, so speed doesn’t matter

Benchmarking: Cycle Counts and RNG 

§ Cycle counts 

‚ We don’t want to benchmark the memory controller 

§ Downclock core to 24MHz Ñ no wait states 
§ Allows to have comprehensible cycle count 

§ randombytes 

‚ We use the hardware RNG of our platform 

8 



Benchmarking: Cycle Counts and RNG 

§ Cycle counts 

‚ We don’t want to benchmark the memory controller 

§ Downclock core to 24MHz Ñ no wait states 
§ Allows to have comprehensible cycle count 

§ randombytes 

‚ We use the hardware RNG of our platform 

‚ Most schemes only sample seed, so speed doesn’t matter 

8 



‚ We don’t want to benchmark those

§ Our approach: Replace those with a single fast

implementation to allow fair comparison

§ SHA-3: ARMv7-M assembly implementation from XKCP 1

§ SHA-2: Fast C implementation from SUPERCOP 2

§ AES: ARMv7-M assembly implementation from [SS16] 3

Benchmarking: Fast Hashing 

§ Submission packages often come with different 

implementations of SHA-2, SHA-3, or AES 

1https://github.com/XKCP/XKCP 
2https://bench.cr.yp.to/supercop.html 
3Schwabe and Stoffelen, SAC 2016 

9 

https://github.com/XKCP/XKCP
https://bench.cr.yp.to/supercop.html


§ Our approach: Replace those with a single fast

implementation to allow fair comparison

§ SHA-3: ARMv7-M assembly implementation from XKCP 1

§ SHA-2: Fast C implementation from SUPERCOP 2

§ AES: ARMv7-M assembly implementation from [SS16] 3

Benchmarking: Fast Hashing 

§ Submission packages often come with different 

implementations of SHA-2, SHA-3, or AES 

‚ We don’t want to benchmark those 

1https://github.com/XKCP/XKCP 
2https://bench.cr.yp.to/supercop.html 
3Schwabe and Stoffelen, SAC 2016 

9 

https://github.com/XKCP/XKCP
https://bench.cr.yp.to/supercop.html


§ SHA-3: ARMv7-M assembly implementation from XKCP 1

§ SHA-2: Fast C implementation from SUPERCOP 2

§ AES: ARMv7-M assembly implementation from [SS16] 3

Benchmarking: Fast Hashing 

§ Submission packages often come with different 

implementations of SHA-2, SHA-3, or AES 

‚ We don’t want to benchmark those 

§ Our approach: Replace those with a single fast 

implementation to allow fair comparison 

1https://github.com/XKCP/XKCP 
2https://bench.cr.yp.to/supercop.html 
3Schwabe and Stoffelen, SAC 2016 

9 

https://github.com/XKCP/XKCP
https://bench.cr.yp.to/supercop.html


§ SHA-2: Fast C implementation from SUPERCOP 2

§ AES: ARMv7-M assembly implementation from [SS16] 3

Benchmarking: Fast Hashing 

§ Submission packages often come with different 

implementations of SHA-2, SHA-3, or AES 

‚ We don’t want to benchmark those 

§ Our approach: Replace those with a single fast 

implementation to allow fair comparison 

§ SHA-3: ARMv7-M assembly implementation from XKCP 1 

1https://github.com/XKCP/XKCP 
2https://bench.cr.yp.to/supercop.html 
3Schwabe and Stoffelen, SAC 2016 

9 

https://github.com/XKCP/XKCP
https://bench.cr.yp.to/supercop.html


§ AES: ARMv7-M assembly implementation from [SS16] 3

Benchmarking: Fast Hashing 

§ Submission packages often come with different 

implementations of SHA-2, SHA-3, or AES 

‚ We don’t want to benchmark those 

§ Our approach: Replace those with a single fast 

implementation to allow fair comparison 

§ SHA-3: ARMv7-M assembly implementation from XKCP 1 

§ SHA-2: Fast C implementation from SUPERCOP 2 

1https://github.com/XKCP/XKCP 
2https://bench.cr.yp.to/supercop.html 
3Schwabe and Stoffelen, SAC 2016 

9 

https://github.com/XKCP/XKCP
https://bench.cr.yp.to/supercop.html


Benchmarking: Fast Hashing 

§ Submission packages often come with different 

implementations of SHA-2, SHA-3, or AES 

‚ We don’t want to benchmark those 

§ Our approach: Replace those with a single fast 

implementation to allow fair comparison 

§ SHA-3: ARMv7-M assembly implementation from XKCP 1 

§ SHA-2: Fast C implementation from SUPERCOP 2 

§ AES: ARMv7-M assembly implementation from [SS16] 3 

1https://github.com/XKCP/XKCP 
2https://bench.cr.yp.to/supercop.html 
3Schwabe and Stoffelen, SAC 2016 

9 

https://github.com/XKCP/XKCP
https://bench.cr.yp.to/supercop.html


§ We tried to collect as many implementations as possible

§ If we missed something

‚ Send us an e-mail or talk to us

‚ Open a pull request

§ For the following results, we restrict to

‚ Only schemes that have been optimized

‚ NIST security level 1

‚ For KEMs: CCA variants

‚ Only SHA-3/SHAKE variants

§ For the full results

‚ see paper at https://ia.cr/2019/844

‚ see https://github.com/mupq/pqm4

Results 

§ Not all schemes have been optimized for this platform yet 

10 

https://ia.cr/2019/844
https://github.com/mupq/pqm4


§ If we missed something

‚ Send us an e-mail or talk to us

‚ Open a pull request

§ For the following results, we restrict to

‚ Only schemes that have been optimized

‚ NIST security level 1

‚ For KEMs: CCA variants

‚ Only SHA-3/SHAKE variants

§ For the full results

‚ see paper at https://ia.cr/2019/844

‚ see https://github.com/mupq/pqm4

Results 

§ Not all schemes have been optimized for this platform yet 

§ We tried to collect as many implementations as possible 

10 

https://ia.cr/2019/844
https://github.com/mupq/pqm4


‚ Send us an e-mail or talk to us

‚ Open a pull request

§ For the following results, we restrict to

‚ Only schemes that have been optimized

‚ NIST security level 1

‚ For KEMs: CCA variants

‚ Only SHA-3/SHAKE variants

§ For the full results

‚ see paper at https://ia.cr/2019/844

‚ see https://github.com/mupq/pqm4

Results 

§ Not all schemes have been optimized for this platform yet 

§ We tried to collect as many implementations as possible 

§ If we missed something 

10 

https://ia.cr/2019/844
https://github.com/mupq/pqm4


‚ Open a pull request

§ For the following results, we restrict to

‚ Only schemes that have been optimized

‚ NIST security level 1

‚ For KEMs: CCA variants

‚ Only SHA-3/SHAKE variants

§ For the full results

‚ see paper at https://ia.cr/2019/844

‚ see https://github.com/mupq/pqm4

Results 

§ Not all schemes have been optimized for this platform yet 

§ We tried to collect as many implementations as possible 

§ If we missed something 

‚ Send us an e-mail or talk to us 

10 

https://ia.cr/2019/844
https://github.com/mupq/pqm4


§ For the following results, we restrict to

‚ Only schemes that have been optimized

‚ NIST security level 1

‚ For KEMs: CCA variants

‚ Only SHA-3/SHAKE variants

§ For the full results

‚ see paper at https://ia.cr/2019/844

‚ see https://github.com/mupq/pqm4

Results 

§ Not all schemes have been optimized for this platform yet 

§ We tried to collect as many implementations as possible 

§ If we missed something 

‚ Send us an e-mail or talk to us 

‚ Open a pull request 

10 

https://ia.cr/2019/844
https://github.com/mupq/pqm4


‚ Only schemes that have been optimized

‚ NIST security level 1

‚ For KEMs: CCA variants

‚ Only SHA-3/SHAKE variants

§ For the full results

‚ see paper at https://ia.cr/2019/844

‚ see https://github.com/mupq/pqm4

Results 

§ Not all schemes have been optimized for this platform yet 

§ We tried to collect as many implementations as possible 

§ If we missed something 

‚ Send us an e-mail or talk to us 

‚ Open a pull request 

§ For the following results, we restrict to 

10 

https://ia.cr/2019/844
https://github.com/mupq/pqm4


‚ NIST security level 1

‚ For KEMs: CCA variants

‚ Only SHA-3/SHAKE variants

§ For the full results

‚ see paper at https://ia.cr/2019/844

‚ see https://github.com/mupq/pqm4

Results 

§ Not all schemes have been optimized for this platform yet 

§ We tried to collect as many implementations as possible 

§ If we missed something 

‚ Send us an e-mail or talk to us 

‚ Open a pull request 

§ For the following results, we restrict to 

‚ Only schemes that have been optimized 

10 

https://ia.cr/2019/844
https://github.com/mupq/pqm4


‚ For KEMs: CCA variants

‚ Only SHA-3/SHAKE variants

§ For the full results

‚ see paper at https://ia.cr/2019/844

‚ see https://github.com/mupq/pqm4

Results 

§ Not all schemes have been optimized for this platform yet 

§ We tried to collect as many implementations as possible 

§ If we missed something 

‚ Send us an e-mail or talk to us 

‚ Open a pull request 

§ For the following results, we restrict to 

‚ Only schemes that have been optimized 

‚ NIST security level 1 

10 

https://ia.cr/2019/844
https://github.com/mupq/pqm4


‚ Only SHA-3/SHAKE variants

§ For the full results

‚ see paper at https://ia.cr/2019/844

‚ see https://github.com/mupq/pqm4

Results 

§ Not all schemes have been optimized for this platform yet 

§ We tried to collect as many implementations as possible 

§ If we missed something 

‚ Send us an e-mail or talk to us 

‚ Open a pull request 

§ For the following results, we restrict to 

‚ Only schemes that have been optimized 

‚ NIST security level 1 

‚ For KEMs: CCA variants 

10 

https://ia.cr/2019/844
https://github.com/mupq/pqm4


§ For the full results

‚ see paper at https://ia.cr/2019/844

‚ see https://github.com/mupq/pqm4

Results 

§ Not all schemes have been optimized for this platform yet 

§ We tried to collect as many implementations as possible 

§ If we missed something 

‚ Send us an e-mail or talk to us 

‚ Open a pull request 

§ For the following results, we restrict to 

‚ Only schemes that have been optimized 

‚ NIST security level 1 

‚ For KEMs: CCA variants 

‚ Only SHA-3/SHAKE variants 

10 

https://ia.cr/2019/844
https://github.com/mupq/pqm4


‚ see paper at https://ia.cr/2019/844

‚ see https://github.com/mupq/pqm4

Results 

§ Not all schemes have been optimized for this platform yet 

§ We tried to collect as many implementations as possible 

§ If we missed something 

‚ Send us an e-mail or talk to us 

‚ Open a pull request 

§ For the following results, we restrict to 

‚ Only schemes that have been optimized 

‚ NIST security level 1 

‚ For KEMs: CCA variants 

‚ Only SHA-3/SHAKE variants 

§ For the full results 

10 

https://ia.cr/2019/844
https://github.com/mupq/pqm4


‚ see https://github.com/mupq/pqm4

Results 

§ Not all schemes have been optimized for this platform yet 

§ We tried to collect as many implementations as possible 

§ If we missed something 

‚ Send us an e-mail or talk to us 

‚ Open a pull request 

§ For the following results, we restrict to 

‚ Only schemes that have been optimized 

‚ NIST security level 1 

‚ For KEMs: CCA variants 

‚ Only SHA-3/SHAKE variants 

§ For the full results 

‚ see paper at https://ia.cr/2019/844 

10 

https://ia.cr/2019/844
https://github.com/mupq/pqm4


Results 

§ Not all schemes have been optimized for this platform yet 

§ We tried to collect as many implementations as possible 

§ If we missed something 

‚ Send us an e-mail or talk to us 

‚ Open a pull request 

§ For the following results, we restrict to 

‚ Only schemes that have been optimized 

‚ NIST security level 1 

‚ For KEMs: CCA variants 

‚ Only SHA-3/SHAKE variants 

§ For the full results 

‚ see paper at https://ia.cr/2019/844 

‚ see https://github.com/mupq/pqm4 

10 

https://ia.cr/2019/844
https://github.com/mupq/pqm4


KEM Speed 

ba
by

be
ar-

op
t

fro
do

kem
64

0sh
ake

-m
4

kyb
er5

12
-m

4

ligh
tsa

be
r-m

4

ntr
uh

ps2
04

85
09

-m
4

ntr
uh

rss
70

1-m
4

r5n
d-1

kem
cca

-0d
-m

4

r5n
d-1

kem
cca

-5d
-m

4
0

20000

40000

60000

80000

100000

120000

140000

160000
k 

cy
cle

s
KeyGen
Encaps
Decaps

11 



KEM Speed (2) 

ba
by

be
ar-

op
t

fro
do

kem
64

0sh
ake

-m
4

kyb
er5

12
-m

4

ligh
tsa

be
r-m

4

ntr
uh

ps2
04

85
09

-m
4

ntr
uh

rss
70

1-m
4

r5n
d-1

kem
cca

-0d
-m

4

r5n
d-1

kem
cca

-5d
-m

4
0

250

500

750

1000

1250

1500

1750

2000
k 

cy
cle

s
KeyGen
Encaps
Decaps

12 



Signature Speed 

dili
thi

um
2-m

4

fal
con

51
2-m

4-c
t

0

25000

50000

75000

100000

125000

150000

175000

200000
k 

cy
cle

s
KeyGen
Sign
Verify

13 



Signature Speed (2) 

dili
thi

um
2-m

4

fal
con

51
2-m

4-c
t

0

5000

10000

15000

20000

25000

30000

35000

40000
k 

cy
cle

s
KeyGen
Sign
Verify

14 



KEM RAM consumption 

ba
by

be
ar-

op
t

fro
do

kem
64

0sh
ake

-m
4

kyb
er5

12
-m

4

ligh
tsa

be
r-m

4

ntr
uh

ps2
04

85
09

-m
4

ntr
uh

rss
70

1-m
4

r5n
d-1

kem
cca

-0d
-m

4

r5n
d-1

kem
cca

-5d
-m

4
0

10000

20000

30000

40000

50000

60000

70000
by

te
s

KeyGen
Encaps
Decaps

15 



KEM RAM consumption (2) 

ba
by

be
ar-

op
t

fro
do

kem
64

0sh
ake

-m
4

kyb
er5

12
-m

4

ligh
tsa

be
r-m

4

ntr
uh

ps2
04

85
09

-m
4

ntr
uh

rss
70

1-m
4

r5n
d-1

kem
cca

-0d
-m

4

r5n
d-1

kem
cca

-5d
-m

4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
by

te
s

KeyGen
Encaps
Decaps

16 



Signature RAM consumption 

dili
thi

um
2-m

4

fal
con

51
2-m

4-c
t

0

10000

20000

30000

40000

50000

60000
by

te
s

KeyGen
Sign
Verify

17 



Signature RAM consumption (2) 

dili
thi

um
2-m

4

fal
con

51
2-m

4-c
t

0

1000

2000

3000

4000

5000
by

te
s

KeyGen
Sign
Verify

18 



‚ 10 KEMs (6 optimized)

‚ 5 signature schemes (2 optimized)

§ Current implementations of Classic McEliece, LEDAcrypt,

NTS-KEM, GeMSS, MQDSS, Picnic, and Rainbow consume

more than 128 KiB of RAM

Ñ don’t fit

§ BIKE, HQC, ROLLO, RQC use OpenSSL/NTL/GMP

Ñ needs to be replaced to make it work

Conclusion 

§ pqm4 currently includes 

19 



‚ 5 signature schemes (2 optimized)

§ Current implementations of Classic McEliece, LEDAcrypt,

NTS-KEM, GeMSS, MQDSS, Picnic, and Rainbow consume

more than 128 KiB of RAM

Ñ don’t fit

§ BIKE, HQC, ROLLO, RQC use OpenSSL/NTL/GMP

Ñ needs to be replaced to make it work

Conclusion 

§ pqm4 currently includes 

‚ 10 KEMs (6 optimized) 

19 



§ Current implementations of Classic McEliece, LEDAcrypt,

NTS-KEM, GeMSS, MQDSS, Picnic, and Rainbow consume

more than 128 KiB of RAM

Ñ don’t fit

§ BIKE, HQC, ROLLO, RQC use OpenSSL/NTL/GMP

Ñ needs to be replaced to make it work

Conclusion 

§ pqm4 currently includes 

‚ 10 KEMs (6 optimized) 

‚ 5 signature schemes (2 optimized) 

19 



§ BIKE, HQC, ROLLO, RQC use OpenSSL/NTL/GMP

Ñ needs to be replaced to make it work

Conclusion 

§ pqm4 currently includes 

‚ 10 KEMs (6 optimized) 

‚ 5 signature schemes (2 optimized) 

§ Current implementations of Classic McEliece, LEDAcrypt, 

NTS-KEM, GeMSS, MQDSS, Picnic, and Rainbow consume 

more than 128 KiB of RAM 

Ñ don’t fit 

19 



Conclusion 

§ pqm4 currently includes 

‚ 10 KEMs (6 optimized) 

‚ 5 signature schemes (2 optimized) 

§ Current implementations of Classic McEliece, LEDAcrypt, 

NTS-KEM, GeMSS, MQDSS, Picnic, and Rainbow consume 

more than 128 KiB of RAM 

Ñ don’t fit 

§ BIKE, HQC, ROLLO, RQC use OpenSSL/NTL/GMP 

Ñ needs to be replaced to make it work 

19 



§ Level of optimization greatly differs

‚ Most implementations don’t optimize RAM consumption

‚ No implementations optimize code size

‚ What does NIST care about?

§ Currently, Round5 seems to be the fastest on this platform

‚ But Kyber, NTRU, Saber, ThreeBears very close

Conclusion 

§ Still many schemes left to optimize Ñ please PR 

20 



‚ Most implementations don’t optimize RAM consumption

‚ No implementations optimize code size

‚ What does NIST care about?

§ Currently, Round5 seems to be the fastest on this platform

‚ But Kyber, NTRU, Saber, ThreeBears very close

Conclusion 

§ Still many schemes left to optimize Ñ please PR 

§ Level of optimization greatly differs 

20 



‚ No implementations optimize code size

‚ What does NIST care about?

§ Currently, Round5 seems to be the fastest on this platform

‚ But Kyber, NTRU, Saber, ThreeBears very close

Conclusion 

§ Still many schemes left to optimize Ñ please PR 

§ Level of optimization greatly differs 

‚ Most implementations don’t optimize RAM consumption 

20 



‚ What does NIST care about?

§ Currently, Round5 seems to be the fastest on this platform

‚ But Kyber, NTRU, Saber, ThreeBears very close

Conclusion 

§ Still many schemes left to optimize Ñ please PR 

§ Level of optimization greatly differs 

‚ Most implementations don’t optimize RAM consumption 

‚ No implementations optimize code size 

20 



§ Currently, Round5 seems to be the fastest on this platform

‚ But Kyber, NTRU, Saber, ThreeBears very close

Conclusion 

§ Still many schemes left to optimize Ñ please PR 

§ Level of optimization greatly differs 

‚ Most implementations don’t optimize RAM consumption 

‚ No implementations optimize code size 

‚ What does NIST care about? 

20 



‚ But Kyber, NTRU, Saber, ThreeBears very close

Conclusion 

§ Still many schemes left to optimize Ñ please PR 

§ Level of optimization greatly differs 

‚ Most implementations don’t optimize RAM consumption 

‚ No implementations optimize code size 

‚ What does NIST care about? 

§ Currently, Round5 seems to be the fastest on this platform 

20 



Conclusion 

§ Still many schemes left to optimize Ñ please PR 

§ Level of optimization greatly differs 

‚ Most implementations don’t optimize RAM consumption 

‚ No implementations optimize code size 

‚ What does NIST care about? 

§ Currently, Round5 seems to be the fastest on this platform 

‚ But Kyber, NTRU, Saber, ThreeBears very close 

20 



https://github.com/mupq/pqm4 

slides and paper available at kannwischer.eu 

Thank you! 

20 

https://github.com/mupq/pqm4
kannwischer.eu


References i 

Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. 

A new hope on ARM Cortex-M. 

In Security, Privacy, and Advanced Cryptography Engineering, 

volume 10076 of Lecture Notes in Computer Science, pages 

332–349. Springer-Verlag Berlin Heidelberg, 2016. 

Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth 

Oswald, and Martijn Stam. 

Fly, you fool! faster frodo for the ARM Cortex-M4. 
Cryptology ePrint Archive, Report 2018/1116, 2018. 
https://eprint.iacr.org/2018/1116. 

21 

https://eprint.iacr.org/2018/1116


References ii 

Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. 

Memory-efficient high-speed implementation of Kyber on 

Cortex-M4. 

In Progress in Cryptology – Africacrypt 2019, Lecture Notes in 

Computer Science, pages 209–228. Springer-Verlag Berlin 

Heidelberg, 2019. 

Tim Güneysu, Markus Krausz, Tobias Oder, and Julian Speith. 

Evaluation of lattice-based signature schemes in 

embedded systems. 

In 25th IEEE International Conference on Electronics, Circuits 

and Systems, ICECS 2018, pages 385–388, 2018. 

22 



References iii 

Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. 

Faster multiplication in Z2m rxs on Cortex-M4 to speed up 

NIST PQC candidates. 

In Applied Cryptography and Network Security, Lecture Notes 

in Computer Science, pages 281–301. Springer-Verlag Berlin 

Heidelberg, 2019. 

Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay, 

and Shivam Bhasin. 

Improving speed of Dilithium’s signing procedure. 
Cryptology ePrint Archive, Report 2019/420, 2019. 
https://eprint.iacr.org/2019/420. 

23 

https://eprint.iacr.org/2019/420

