pqsigRM:
Modified RM Code-Based Signature Scheme

April 13, 2018

Wijik Lee, Yongwoo Lee, Jong-Seon No1, Young-Sik Kim2
1Department of ECE, INMC, Seoul National University, Seoul, Korea
2Chosun University, Gwangju, Korea
Outline

I. Introduction
II. pqsigRM
III. Known Issues and Solutions
Outline

I. Introduction

II. pqsigRM

III. Known Issues and Solutions
CFS signature scheme is one of the well-known post-quantum signature scheme.

RM code-based CFS signature scheme is proven to be insecure due to Minder-Shokrollahi’s attack and later the Chizhov-Borodin’s attack and square code attack.

We propose the modification methods for the CFS signature scheme based on the modified RM codes.
CFS Signature Scheme

- CFS signature scheme (Courtois, Finiasz, Sendrier, 2001)
 - Using Goppa code.
- Message is hashed to a syndrome and a signature is treated as an error.
 - $h(m)$: Hashed message
 - Find signature z such that $H'z = h(h(m)|i)$, where H' is a parity check matrix and i is a counter.
- Disadvantage
 - The probability of finding decodable syndrome is $\frac{1}{t!}$, which is too low.
 - The private and public key sizes are large.
- Other signature schemes have been broken, such as KKS, KKS variants, and CFS based on LDGM codes.
Decoding of RM code can perform closest coset decoding.
- RM code-based CFS signature scheme takes less signing time than Goppa code-based CFS signature scheme.

Attacks on RM code-based cryptosystems/signature schemes.
- Minder-Shokrollahi’s attack
- Chizhov-Borodin’s attack
- Square code attack

Our proposed pqsigRM is the modified version of the RM code-based CFS signature scheme to prevent these attacks.
Outline

I. Introduction

II. pqsigRM

III. Known Issues and Solutions
Public Key of pqsigRM

- Delete the rows of index set L_D in the systematic form of parity check matrix $H = [P^T \ I]$.
- Replace the p rows of the parity part P^T by the binary random vectors.
- Then, the modified matrix H_m is given as

$$H_m = \begin{bmatrix} P'^T & I_{n-k-p} & 0 \\ R & I_p \end{bmatrix}$$

Figure: Modified parity check matrix of the proposed signature scheme.

- $H' = S H_m Q$ is the public key of pqsigRM, where S is a $(n - k) \times (n - k)$ scrambling matrix and Q is a permutation matrix.
Outline

I. Introduction

II. pqsigRM

III. Known Issues and Solutions
Known Issues

- Attacks revealing puncturing/insertion have been proposed by the pqc-forum.
 - The signature has higher probability for element 1 in the punctured/inserted positions of signature.
 - The near-minimum codewords have higher probability for element 1 in the punctured/inserted positions of codewords.
 - The hull of public code has all zero in the punctured/inserted positions of codewords.

- We have prevented these attacks by the following modification.
The Generator Matrix of pqsigRM Public Code

Figure: The generator matrix of pqsigRM public code.
Modification of Generator Matrix of RM(5,11)

Figure: The generator matrix of the modified pqsigRM public code from RM(5,11).

\[\begin{array}{ccc}
RM(5,10) & & RM(5,10) \\
0 & & 0 \\
\pi(RM(4,9)) & & \pi(RM(4,9)) \\
0 & & RM(3,9) \\
\end{array} \]
The public key of pqsigRM is a permuted parity check matrix corresponding to the generator matrix of the RM code, in which \(p \) columns are replaced by random vectors.

Here, we will simply replace the generator matrix with permuted generator submatrix of RM code.

For example, in pqsigRM-5-11, we replace the partial matrices of \(G \), the generator matrix of RM(5,11), with the generator matrix of a permuted RM(4,9).
New Decoding Algorithm for Signing

Algorithm – decoder for pqsigRM-5-11, $\Psi_r^m(y, f, r)$:

If $r = 0$, perform MD decoding for code $\text{RM}(0,m)$

Elif $r = m$, perform MD decoding for code $\text{RM}(r, r)$

Else

\textbf{If} $f = 1024$ and $r = 1536$, depermute y

$(y' | y'') \leftarrow y$

$y^v \leftarrow y'y''$

$\overline{y^v} \leftarrow \Psi_{r-1}^{m-1}(y^v, f + r, r)$

$y^u \leftarrow (y' + y''\overline{y^v})/2$

$\overline{y^u} \leftarrow \Psi_{r-1}^{m-1}(y^u, f, f + r)$

$\overline{y^c} \leftarrow (\overline{y^u} | \overline{y^u}\overline{y^v})$

\textbf{If} $f = 1024$ and $r = 1536$, permute $\overline{y^c}$

Return $\overline{y^c}$
Performance

<table>
<thead>
<tr>
<th>Security</th>
<th>Algorithm</th>
<th>Public key size (Byte)</th>
<th>Performance (ms)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Key generation</td>
<td>Signing</td>
</tr>
<tr>
<td>Category 1</td>
<td>pqsigRM-5-11</td>
<td>129 K</td>
<td>787</td>
<td>11375</td>
</tr>
<tr>
<td>Category 3</td>
<td>pqsigRM-6-12</td>
<td>488 K</td>
<td>4009</td>
<td>11013</td>
</tr>
<tr>
<td>Category 5</td>
<td>pqsigRM-6-13</td>
<td>2055 k</td>
<td>37249</td>
<td>227</td>
</tr>
</tbody>
</table>

Benchmark on Intel(R) i7-6700k 4.00GHz, single core
Conclusion

- There is no all-zero position on the hull of public code.
- The probability for elements 1’s in the signature is almost equal.
- Near-minimum Hamming weight codewords are no longer useful to locate the modified columns, because 1/2 elements of each codeword are replaced by partially permuted RM codes.
- Modifying the generator matrix in this way also prevents square code attack, Chizhov-Borodin’s attack, and Minder-Shokrollahi’s attack.
- Further optimization for key sizes and running times is required.