

The 2nd Round of the NIST PQC Standardization Process

Dustin Moody

The 2nd NIST PQC Standardization Workshop

- Over 250 people registered
- (almost) All of the Round 2 teams will give an update
- 17 papers to be presented out of 43 submitted
- An Industry Panel later today
- Final session Next Steps/Open Problems
 - Please answer the questions sent to you / scan the QR code

Comments on PQC Standardization

NIST is asking for comments and suggestions from the post-quantum crypto community, about our next steps towards standardizing PQC. It will be especially helpful if you can express each comment or suggestion in 1-2 concise paragraphs. If you have multiple comments on different topics, please submit them separately

Comments submitted using this form will be read by the NIST PQC team. Comments are anonymous, unless the author specifically writes their name into the comment itself. The names of the commenters and other personally identifying information will be kept private, but THE TEXT OF THE COMMENTS MAY BE MADE PUBLIC, in order to encourage further discussion.

FOR CONFERENCE ATTENDEES ONLY! PLEASE DO NOT SHARE LINK.

Our big question is:

What are the most important actions that we (the PQC community) need to carry out during the next few years? (1000 character limit, MAY BE MADE PUBLIC)

Your answ

To help us sort through the comments, please check any of the following boxes that apply to your comments:

General subject areas:

Theory and security proofs

 $\hfill\square$ Software and hardware implementations, performance, and quality assurance

Deployment, standardization, and organizational and legal issues

Cryptanalysis and possible attacks

Other:

How we got here...

- NIST's public-key crypto standards
 - FIPS 186, The Digital Signature Standard
 - SP 800-56 A/B, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm/Integer Factorization Cryptography

Quantum computers and Shor's Algorithm

Algorithms for Quantum Computation: Discrete Logarithms and Factoring

Peter W. Shor AT&T Bell Labs Room 2D-149 600 Mountain Ave. Murray Hill, NJ 07974, USA

Abstract

A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. (We thus give the first examples of quantum cryptanalysis.)

1 Introduction

Since the discovery of quantum mechanics, people have found the behavior of the laws of probability in quantum mechanics counterintuitive. Because of this behavior, quantum mechanical phenomena behave quite differently than the phenomena of classical physics that we are used to. Feynman seems to have been the first to ask what effect this has on computation [13, 14]. He gave arguments as [1, 2]. Although he did not ask whether quantum mechanics conferred extra power to computation, he did show that a Turing machine could be simulated by the reversible unitary evolution of a quantum process, which is a necessary prerequisite for quantum computation. Deutsch [9, 10] was the first to give an explicit model of quantum computation. He defined both quantum Turing machines and quantum circuits and investigated some of their properties.

The next part of this paper discusses how quantum computation relates to classical complexity classes. We will thus first give a brief intuitive discussion of complexity classes for those readers who do not have this background. There are generally two resources which limit the ability of computers to solve large problems: time and space (i.e., memory). The field of analysis of algorithms considers the asymptotic demands that algorithms make for these resources as a function of the problem size. Theoretical computer scientists generally classify algorithms as efficient when the number of steps of the algorithms grows as a polynomial in the size of the input. The class of problems which can be solved by efficient algorithms is known as P. This classification has several nice properties. For one thing, it does a reasonable job of reflecting the performance of algorithms in practice (although an algorithm whose running time is the tenth power of the input size, say, is not truly efficient). For another, this classification is nice theoretically, as different reasonable machine models produce the same class P. We will see this behavior reappear in quantum computation, where different models for

How we got here...

- 2006 1st PQCrypto conference in Leuven, Belgium
- 2009 NIST PQC survey <u>Quantum Resistant Public Key Cryptography: A Survey</u> [Perlner, Cooper]
- 2012 NIST begins PQC project
- Apr 2015 NIST Workshop on Cybersecurity in a Post-Quantum World
- Aug 2015 NSA announcement
- Feb 2016 NIST Report on PQC (NISTIR 8105)
- Feb 2016 NIST announcement of "competition-like process" at PQCrypto in Japan
- Dec 2016 Final requirements and evaluation criteria published
- Nov 2017 Deadline for Submissions
- Dec 2017 Round 1 begins 69 candidates accepted as "complete and proper"
- Apr 2018 1st NIST PQC Standardization Workshop
- Jan 2019 Round 2 candidates announced
- Aug 2019 2nd NIST PQC Standardization Workshop

The "Competition"

- Scope:
 - Digital Signatures
 - EUF-CMA up to 2⁶⁴ signature queries
 - Public-key Encryption / Key-Encapsulation Mechanisms (KEMs)
 - IND-CCA up to 2⁶⁴ decryption/decapsulation queries
 - IND-CPA option
- Open and transparent process
- Unlike previous AES and SHA-3 competitions, there will not be a single "winner"

Evaluation Criteria

Security – against both classical and quantum attacks

Level	Security Description
- I	At least as hard to break as AES128 (exhaustive key search)
II	At least as hard to break as SHA256 (collision search)
	At least as hard to break as AES192 (exhaustive key search)
IV	At least as hard to break as SHA384 (collision search)
V	At least as hard to break as AES256 (exhaustive key search)

- NIST asked submitters to focus on levels 1,2, and 3. (Levels 4 and 5 are for very high security)
- Performance measured on various classical platforms
- Other properties: Drop-in replacements, Perfect forward secrecy, Resistance to side-channel attacks, Simplicity and flexibility, Misuse resistance, etc.

The 1st Round Candidates

- 82 submissions received.
- <u>69 accepted</u> as "complete and proper" (5 withdrew)

	Signatures	KEM/Encryption	Overall
Lattice-based	5	21	26
Code-based	2	17	19
Multi-variate	7	2	9
Symmetric-based	3		3
Other	2	5	7
Total	19	45	64

The 1st Round 2nd Round Candidates

	Signa	itures	Ires KEM/Encryption		Overall	
Lattice-based	5	3	2 1	9	26	12
Code-based	2	0	17	7	19	7
Multi-variate	7	4	2	0	9	4
Symmetric-based	3	2			3	2
Other	2	0	5	1	7	1
Total	19	9	45	17	6 4	26

Overview of the 1st Round

- Began Dec 2017 1st Round Candidates published
- Resources:
 - Internal and external cryptanalysis
 - 21 of the 69 schemes had been broken/attacked by April
 - The <u>1st NIST PQC Standardization Workshop</u>
 - Research publications
 - Performance benchmarks
 - Official comments
 - The pqc-forum mailing list

NIST's Process

- Dec 2017 Check submissions for completeness
- Jan to Sep 2018 Detailed internal presentations on submissions
- Apr 2018 1st Workshop submitter's presentations
- Sep to Nov 2018 Review and make preliminary decisions
 - Compare similar type schemes to each other
- Dec 2018 Final decision and start report (NISTIR 8240)
 - Very hard decisions
 - <u>NISTIR 8240</u> Status Report on the 1st Round of the NIST PQC Standardization Process
 - Report focused on the reasons for moving on
- Announced 2nd Round candidates Jan 30, 2019

Apples and Oranges

Encryption/KEMs					Signatures		
Crystals-Kyber	Lattice MLWE	Big Quake	Codes	Goppa	CRYSTALS-Dilithium	Lattice	Fiat-Shamir
KINDI	Lattice MLWE	Classic McEliece	Codes	Goppa	qTesla	Lattice	Fiat-Shamir
Saber	Lattice MLWR	NTS-KEM	Codes	Goppa	Falcon	Lattice	Hash then sign
FrodoKEM	Lattice LWE	BIKE	Codes	short Hamming	pqNTRUSign	Lattice	Hash then sign
Lotus	Lattice LWE	HQC	Codes	short Hamming			
Lizard	Lattice LWE/RLWE	LEDAkem	Codes	short Hamming	Gravity-SPHINCS	Symm	Hash
Emblem/R.emblem	Lattice LWE/RLWE	LEDApkc	Codes	short Hamming	SPHINCS+	Symm	Hash
KCL	Lattice LWE/RLWE/LWR	QC-MDPC KEM	Codes	short Hamming	Picnic	Symm	ZKP
Round 2	Lattice LWR/RLWR	LAKE	Codes	low rank			
Hila5	Lattice RLWE	LOCKER	Codes	low rank	GeMMS	MultVar	HFE
Ding's key exchange	Lattice RLWE	Ouroboros-R	Codes	low rank	Gui	MultVar	HFE
LAC	Lattice RLWE	RQC	Codes	low rank	HIMQ-3	MultVar	UOV
Lima	Lattice RLWE				LUOV	MultVar	UOV
NewHope	Lattice RLWE				Rainbow	MultVar	UOV
Three Bears	Lattice IMLWE	SIKE	Isogeny	Isogeny	MQDSS	MultVar	Fiat-Shamir
Mersenne-756839	Lattice ILWE						
Titanium	Lattice MP-LWE						
Ramstake	Lattice LWE like						
Odd Manhattan	Lattice Generic						
NTRU Encrypt	Lattice NTRU						
NTRU-HRSS-KEM	Lattice NTRU						
NTRUprime	Lattice NTRU						

Biting the Bullet

Crystals-Kyber	Lattice	MLWE	
KINDI	Lattice	MLWE	
Saber	Lattice	MLWR	
FrodoKEM	Lattice	LWE	
Lotus	Lattice	LWE	
Lizard	Lattice	LWE/RLWE	
Emblem/R.emblem	Lattice	LWE/RLWE	
KCL	Lattice	LWE/RLWE/LWR	
Round 2	Lattice	LWR/RLWR	-
Hila5	Lattice	RLWE	
Ding's key exchange	Lattice	RLWE	
LAC	Lattice	RLWE	
Lima	Lattice	RLWE	
NewHope	Lattice	RLWE	
Three Bears	Lattice	IMLWE	
Mersenne-756839	Lattice	ILWE	
Titanium	Lattice	MP-LWE	
Ramstake	Lattice	LWE like	
Odd Manhattan	Lattice	Generic	
NTRU Encrypt	Lattice	NTRU	
NTRU-HRSS-KEM	Lattice	NTRU	
NTRUprime	Lattice	NTRU	

	X	
Crystals-Kyber	r Lattice	MLWE
aber	Lattice	MLWR
rodoKEM	Lattice	LWE
Round 5	Lattice	LWR/RLWR
.AC	Lattice	RLWE
NewHope	Lattice	RLWE
Three Bears	Lattice	IMLWE
NTRU	Lattice	NTRU
NTRUprime	Lattice	NTRU

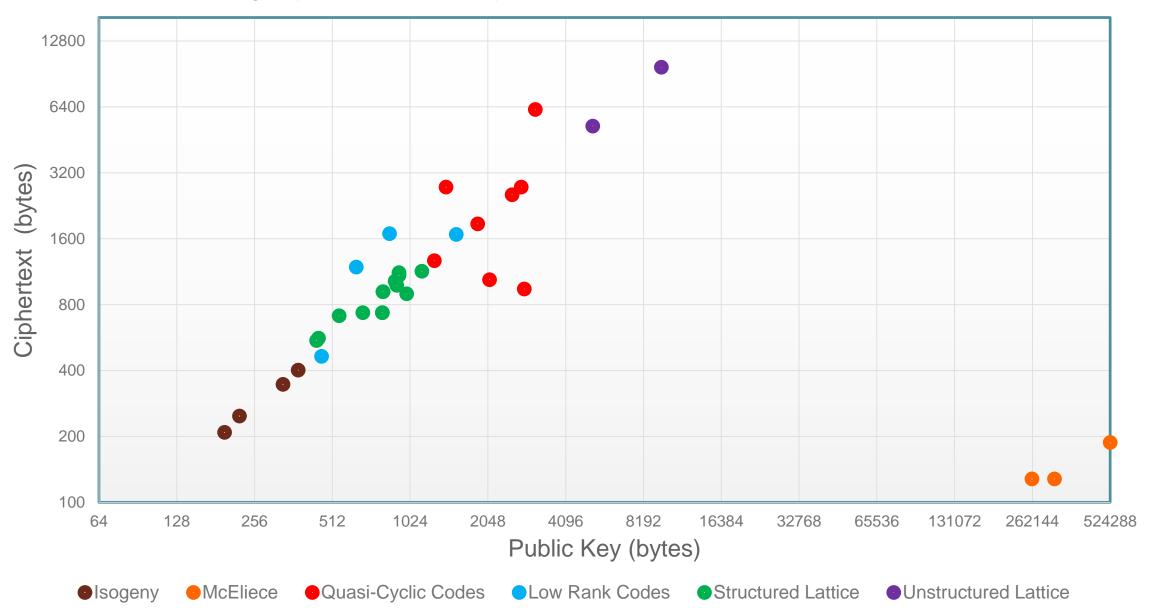
Big Quake	Codes	Goppa	
Classic McEliece	Codes	Goppa	
NTS-KEM	Codes	Goppa	
BIKE	Codes	short Hamming	
HQC	Codes	short Hamming	
LEDAkem	Codes	short Hamming	
LEDApkc	Codes	short Hamming	
QC-MDPC KEM	Codes	short Hamming	
LAKE	Codes	low rank	
LOCKER	Codes	low rank	
Ouroboros-R	Codes	low rank	
RQC	Codes	low rank	
SIKE	Isogeny	Isogeny	

Signatures			
CRYSTALS-Dilithium	Lattice	Fiat-Sh	amir
qTesla	Lattice	Fiat-Sh	amir
Falcon	Lattice	Hash t	nen sign
pqNTRUSign	Lattice	Hash t	nen sign
Gravity-SPHINCS	Symm	Hash	
SPHINCS+	Symm	Hash	
Picnic	Symm	ZKP	
GeMMS	MultVar	HFE	
Gui	MultVar	HFE	
HiMQ-3	MultVar	UOV	
LUOV	MultVar	UOV	
Rainbow	MultVar	UOV	
MQDSS	MultVar	Fiat-Sh	amir

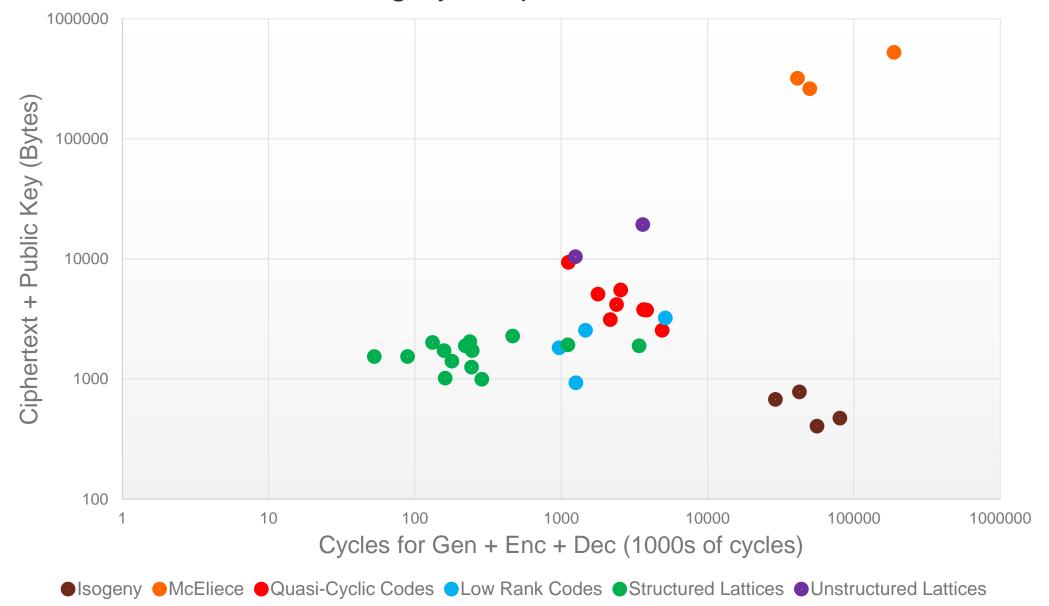
Classic McEliece	e Codes	Goppa	
NTS-KEM	Codes	Goppa	
BIKE	Codes	short Hamming	
HQC	Codes	short Hamming	
LEDAcrypt	Codes	short Hamming	
Rollo	Codes	low rank	
RQC	Codes	low rank	
SIKE	Isogeny	Isogeny	

Signatures		
CRYSTALS-Dilithium	Lattice	Fiat-Shamir
qTesla	Lattice	Fiat-Shamir
Falcon	Lattice	Hash then sign
SPHINCS+	Symm	Hash
Picnic	Symm	ZKP
GeMMS	MultVar	HFE
LUOV	MultVar	UOV
Rainbow	MultVar	UOV
MQDSS	MultVar	Fiat-Shamir

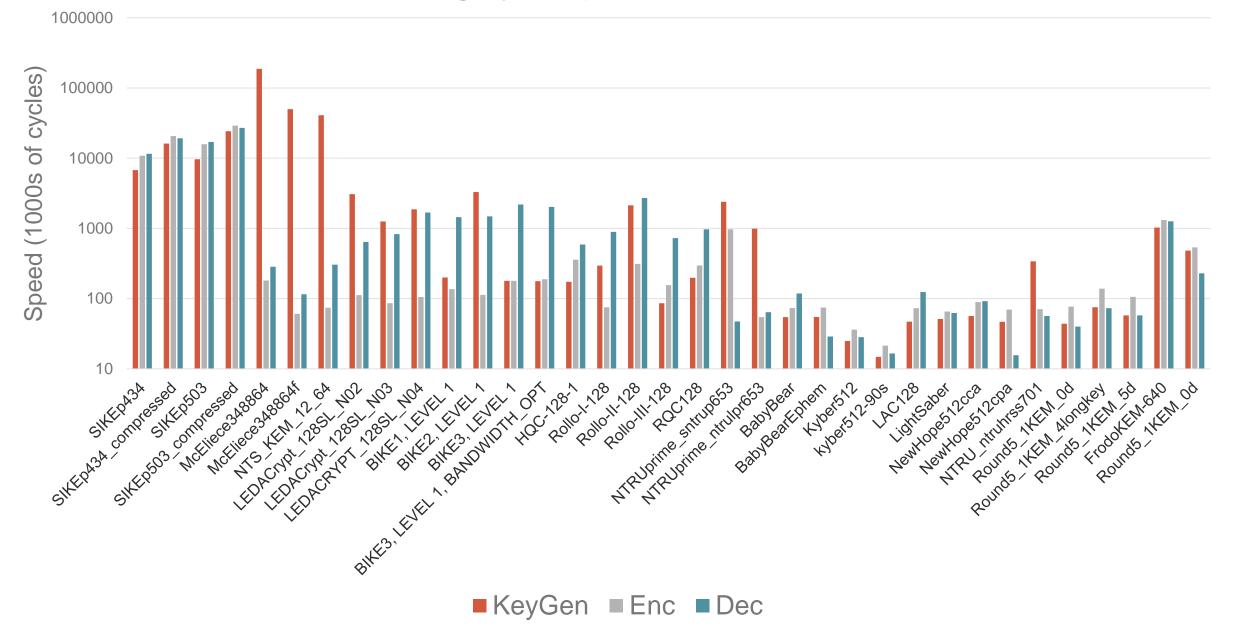
The Second Round (and beyond)

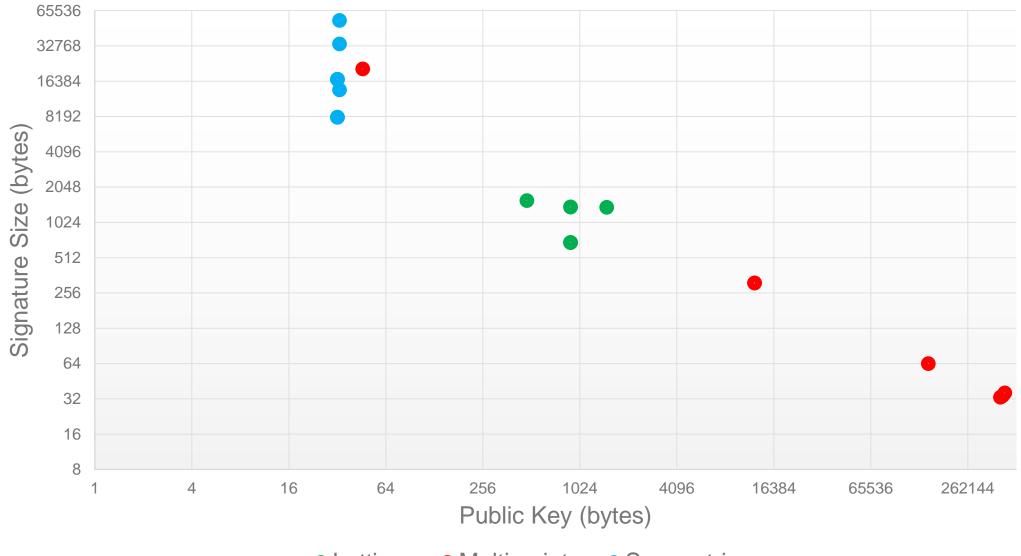

- NIST is still open to mergers
- Only need new IP statements if new team members have joined, or if IP status has changed
 - Later on in process, IP concerns may play a larger role in our decisions
- The 2nd Round will take 12-18 months, after which we expect to have a 3rd Round

- Overall timeline: we still expect draft standards around 2022ish
 - (but reserve the right to change this!)

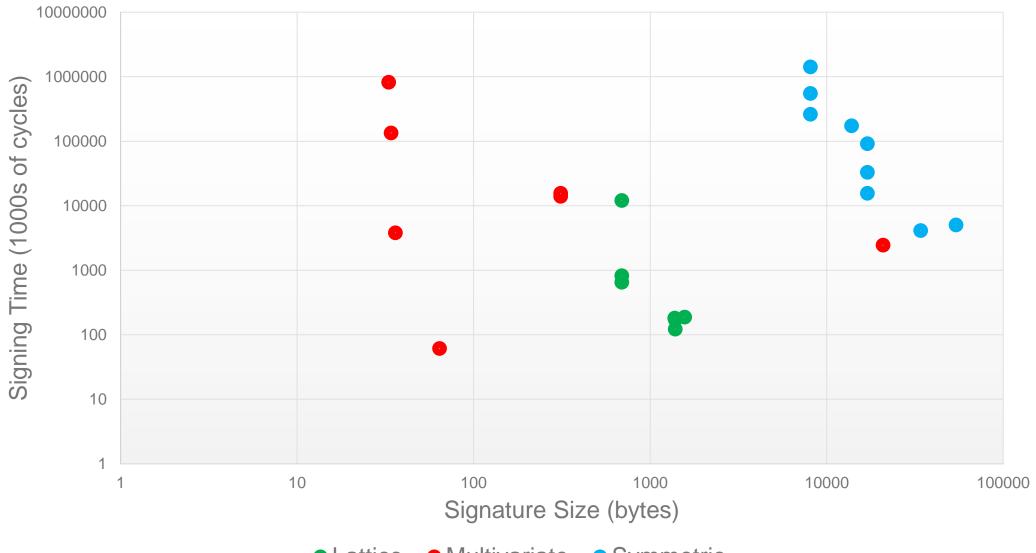

Performance

- We have internal numbers, based on implementations sent to us
 - We strongly prefer code that is constant time
- Performance will play a larger role in the 2nd Round
 - We encourage benchmarking on a variety of platforms
 - We are looking for mature schemes beyond just proof of concept
- Implementations can always be updated
 - We won't change the implementations on our Round 2 webpage
 - Teams should feel free to advertise results on the pqc-forum, and on their own websites


Category 1: Public Key vs Ciphertext size - PKE/KEMs

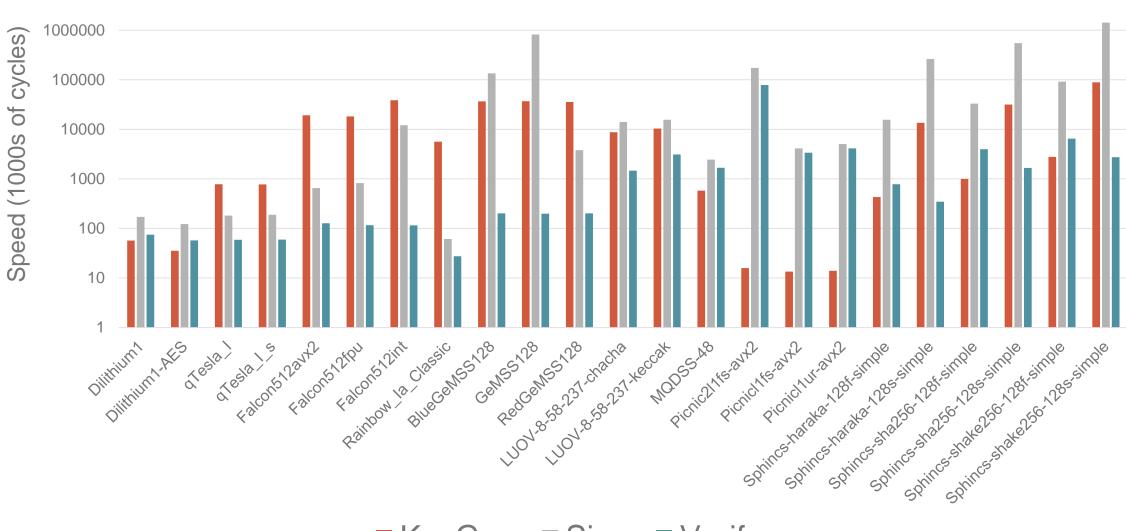

Category 1: Speed vs Sizes

Category 1: Speed - PKE/KEMs



Category 1: Public Key vs Signature Size - Signatures

Lattices
Multivariate
Symmetric


Category 1: Speed vs Size - Signatures

Lattice
Multivariate
Symmetric

Category 1: Speed - Signatures

1000000

■ KeyGen ■ Sign ■ Verify

Stateful Hash-based signatures

- NIST plans to approve stateful hash-based signatures
 - 1) XMSS, specified in <u>RFC 8391</u>
 - 2) LMS, specified in <u>RFC 8554</u>
 - Will include their multi-tree variants, XMSS^MT and HSS
- In Feb 2019, NIST issued a request for public input on how to mitigate the potential misuse of stateful HBS schemes.
 - See comments received <u>here</u>
- Will recommend HBS schemes limited to scenarios in which a digital signature scheme needs to be deployed soon, but where risks of accidental one-time key reuse can be minimized

• NIST expects to have a draft Special Publication (SP) published by the end of 2019

What NIST wants

- Performance (hardware+software) will play more of a role
 - More benchmarks
 - For hardware, NIST asks to focus on Cortex M4 (with all options) and Artix-7
 - pqc-hardware-forum
 - How do schemes perform on constrained devices?
 - Side-channel analysis (concrete attacks, protection, etc...)
- Continued research and analysis on ALL of the 2nd round candidates

See how submissions fit into applications/procotols. Any constraints?

Summary

- Round 2 is ongoing....
 - 26 candidate algorithms (17 encryption/KEM, 9 signatures)
- We will continue to work in an open and transparent manner with the crypto community for PQC standards
- Check out: <u>www.nist.gov/pqcrypto</u>
 - Sign up for the pqc-forum
- Talk to us: <u>pqc-comments@nist.gov</u>

